Corncob is an agricultural biomass waste that was widely investigated as an adsorbent of contaminants after transforming it into activated carbon. In this research carbonization and chemical activation processes were achieved to synthesize corncob-activated carbon (CAC). Many pretreatment steps including crushing, grinding, and drying to obtain corncob powder were performed before the carbonization step. The carbonization of corncob powder has occurred in the absence of air at a temperature of 500 °C. The chemical activation was accomplished by using HCl as an acidic activation agent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) facilitated the characterization of (CAC). The results showed the CAC has non-uniform morphological features with different shapes of its active sites. The prepared CAC was utilized in adsorption of sulfur in its highly complex form of dibenzothiophene (DBT). Particular adsorption parameters of contacting time, temperature, and adsorbent dose were optimized to select the best conditions. These certain conditions are then applied in the adsorption of different DBT concentrations. The maximum removal of DBT reached around 83% at optimal conditions of contacting time (30 min), temperature (60 °C), and adsorbent dose (3 g L-1). The removal efficiency was significantly increased by decreasing the initial concentration of DBT. The experimental data fitted well with the Freundlich isotherm model compared with the Langmuir one. The maximum capacity of CAC for adsorption of DBT at equilibrium was 833.3 mg g-1 at 60 °C. The findings of this research introduce the CAC as a feasible adsorbent for removal DBT from simulated liquid petroleum fuels.
A two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was
... Show MorePurpose – The Cloud computing (CC) and its services have enabled the information centers of organizations to adapt their informatic and technological infrastructure and making it more appropriate to develop flexible information systems in the light of responding to the informational and knowledge needs of their users. In this context, cloud-data governance has become more complex and dynamic, requiring an in-depth understanding of the data management strategy at these centers in terms of: organizational structure and regulations, people, technology, process, roles and responsibilities. Therefore, our paper discusses these dimensions as challenges that facing information centers in according to their data governance and the impa
... Show MoreImportance of study :
The interesting of industrial sector and developing it after corner stone. It is important to build economic balanced and get behind and front linkage for transformative industrials, and this is important to get balanced.
The value of transformative industry sector is more important than other sectors in economy, and this is reflect the capital in industrial sector .Industry sector is larger than other sectors ,so it regards the motive which moving the economic wheel .
The problem :
The research treats reduction and retreat the ind
... Show MoreBlockchain represents a new promising technology with a huge economic impact resulting from its uses in various fields such as digital currency and banking; malware represents a serious threat to users, and there are many differences in the effectiveness of antivirus software used to deal with the problem of malware. This chapter has developed a coefficient for measuring the effectiveness of antivirus software. This chapter evaluates the effectiveness of antivirus software by conducting tests on a group of protection programs using a folder containing an amount of data. These programs are applied to combat viruses contained in this folder. The study revealed that the effectiveness of antivirus software is as follows: AVG scored 0%,
... Show MoreAn optoelectronic flow-through detector for active ingredients determination in pharmaceutical formulations is explained. Two consecutive compact photodetector’s devices operating according to light-emitting diodes-solar cells concept where the LEDs acting as a light source and solar cells for measuring the attenuated light of the incident light at 180˚ have been developed. The turbidimetric detector, fabricated of ten light-emitting diodes and five solar cells only, integrated with a glass flow cell has been easily adapted in flow injection analysis manifold system. For active ingredients determination, the developed detector was successfully utilized for the development and validation of an analytical method for warfarin determination
... Show MoreThe advancements in Information and Communication Technology (ICT), within the previous decades, has significantly changed people’s transmit or store their information over the Internet or networks. So, one of the main challenges is to keep these information safe against attacks. Many researchers and institutions realized the importance and benefits of cryptography in achieving the efficiency and effectiveness of various aspects of secure communication.This work adopts a novel technique for secure data cryptosystem based on chaos theory. The proposed algorithm generate 2-Dimensional key matrix having the same dimensions of the original image that includes random numbers obtained from the 1-Dimensional logistic chaotic map for given con
... Show MoreNowadays, Wheeled Mobile Robots (WMRs) have found many applications as industry, transportation, inspection, and other fields. Therefore, the trajectory tracking control of the nonholonomic wheeled mobile robots have an important problem. This work focus on the application of model-based on Fractional Order PIaDb (FOPID) controller for trajectory tracking problem. The control algorithm based on the errors in postures of mobile robot which feed to FOPID controller to generate correction signals that transport to torque for each driven wheel, and by means of dynamics model of mobile robot these torques used to compute the linear and angular speed to reach the desired pose. In this work a dynamics model of
... Show MoreIn data transmission a change in single bit in the received data may lead to miss understanding or a disaster. Each bit in the sent information has high priority especially with information such as the address of the receiver. The importance of error detection with each single change is a key issue in data transmission field.
The ordinary single parity detection method can detect odd number of errors efficiently, but fails with even number of errors. Other detection methods such as two-dimensional and checksum showed better results and failed to cope with the increasing number of errors.
Two novel methods were suggested to detect the binary bit change errors when transmitting data in a noisy media.Those methods were: 2D-Checksum me
The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show More