Corncob is an agricultural biomass waste that was widely investigated as an adsorbent of contaminants after transforming it into activated carbon. In this research carbonization and chemical activation processes were achieved to synthesize corncob-activated carbon (CAC). Many pretreatment steps including crushing, grinding, and drying to obtain corncob powder were performed before the carbonization step. The carbonization of corncob powder has occurred in the absence of air at a temperature of 500 °C. The chemical activation was accomplished by using HCl as an acidic activation agent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) facilitated the characterization of (CAC). The results showed the CAC has non-uniform morphological features with different shapes of its active sites. The prepared CAC was utilized in adsorption of sulfur in its highly complex form of dibenzothiophene (DBT). Particular adsorption parameters of contacting time, temperature, and adsorbent dose were optimized to select the best conditions. These certain conditions are then applied in the adsorption of different DBT concentrations. The maximum removal of DBT reached around 83% at optimal conditions of contacting time (30 min), temperature (60 °C), and adsorbent dose (3 g L-1). The removal efficiency was significantly increased by decreasing the initial concentration of DBT. The experimental data fitted well with the Freundlich isotherm model compared with the Langmuir one. The maximum capacity of CAC for adsorption of DBT at equilibrium was 833.3 mg g-1 at 60 °C. The findings of this research introduce the CAC as a feasible adsorbent for removal DBT from simulated liquid petroleum fuels.
Two series of bent core mesogen containing 1,2,4-traizole ring [X]a-e and [XI]a-e were synthesized by many steps starting from esterification of isophthalic acid with methanol to yield diester compound [I] which was converted to their acid hydrazide [II] and the acid hydrazide reacted with ammonium thiocyanate or phenyl isothiocyanate to yield compounds [III] and [IV] , respectively . Then cyclization by 4% NaOH to yielded 1,2,4 traizole-3- thiol compounds [V] and [VI], respectively, afterword adding hydrazine hydrate to yield compounds [VII] and [VIII] .These compounds condensated with different substituted aldehyde to give new Schiff bases[X]a-e and [XI]a-e,respectively. The synthesized compounds were characterized by melting points ,
... Show MoreThe purpose of this research is to prepare new vanillic acid derivatives with 1,2,4-triazole-3-thiol heterocyclic ring and evaluate their antimicrobial activity in a preliminary assessment. A multistep synthesis was established for the preparation of new vanillic acid-triazole conjugates. The intermediate of 4-(4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)-2-methoxyphenol (4) reacts with different heterocyclic aldehydes (thiophene-2-carboxaldehyde, pyrrole-2-carboxaldehyde, thiophene-3-carboxaldehyde, and furfural ) in ethanol containing few drops of acetic acid yielded the corresponding 4-(4-(substituted amino)-5-mercapto-4H-1,2,4-1triazol-3-yl)-2-methoxy phenol derivatives (5-8). These compounds were characterized spectroscopically by
... Show MoreThe purpose of this research is to prepare new vanillic acid derivatives with 1,2,4-triazole-3-thiol heterocyclic ring and evaluate their antimicrobial activity in a preliminary assessment. A multistep synthesis was established for the preparation of new vanillic acid-triazole conjugates. The intermediate of 4-(4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)-2-methoxyphenol (4) reacts with different heterocyclic aldehydes (thiophene-2-carboxaldehyde, pyrrole-2-carboxaldehyde, thiophene-3-carboxaldehyde, and furfural ) in ethanol containing few drops of acetic acid yielded the corresponding 4-(4-(substituted amino)-5-mercapto-4H-1,2,4-1triazol-3-yl)-2-methoxy phenol derivatives (
Thin film solar cells are preferable to the researchers and in applications due to the minimum material usage and to the rising of their efficiencies. In particular, thin film solar cells, which are designed based one transition metal chalcogenide materials, paly an essential role in solar energy conversion market. In this paper, transition metals with chalcogenide Nickel selenide termed as (NiSe2/Si) are synthesized. To this end, polycrystalline NiSe2 thin films are deposited through the use of vacuum evaporation technique under vacuum of 2.1x10-5 mbar, which are supplied to different annealing temperatures. The results show that under an annealed temperature of 525 K,
... Show MoreThe current study examines the combined impacts of ultrasonic waves and nano silica (NS) on reducing the viscosity Sharqy Baghdad heavy crude oil with an API gravity of 20.32. NS of an average particle size of 59.93 nm and 563.23 m²/g surface area were produced utilizing the sol-gel technique from Iraqi sand. The XRD analysis indicates the existence of an amorphous silica, the SEM analysis showed that NS tends to agglomerate, and the FTIR spectra exhibited the presence of siloxane and silanol groups. In addition, the TGA analysis demonstrated a total weight loss of 15.62%, validating the thermal stability of the NS. The experiments included a study of the impact of ultrasonic power, exposure time, duty cycle, temperature, and the c
... Show MoreThis research paper aimed to quantitively characterize the pore structure of shale reservoirs. Six samples of Silurian shale from the Ahnet basin were selected for nitrogen adsorption-desorption analysis. Experimental findings showed that all the samples are mainly composed of mesopores with slit-like shaped pores, as well as the Barrett-Joyner-Halenda pore volume ranging from 0.014 to 0.046 cm3/ 100 g, where the lowest value has recorded in the AHTT-1 sample, whereas the highest one in AHTT-6, while the rest samples (AHTT-2, AHTT-3, AHTT-4, AHTT-5) have a similar average value of 0.03 cm3/ 100 g. Meanwhile, the surface area and pore size distribution were in the range of 3.8 to 11.1 m2 / g and 1.7 to 40 nm, respectively.
... Show MoreA niger, a fungus which doesn't have high ability to production lipid, this fungus has been select to investigate the non oleaginicity. In this search, there are explorations about: i) growth profile ii) enzymes profile iii) isoforms. Growth profile shows that this fungus doesn't have ability to accumulate lipid more than 6% while bio mass are around 10g/l in spite of the presence of glucose in the media till the end of cultivation time and excision of nitrogen within 24 hrs. In enzyme study, we investigate all lipogenic enzymes Malic enzyme (ME), Fatty acid synthase (FAS), ATP: Citrate lays (ACL), NAD+ isocitrate dehydrogenase (NAD+ICDH), Glucose-6-phosphate (G6PD), and 6-phosphogluconate dehydrogenase (6PGD), all these enzymes show, ac
... Show MoreA new class of thiadiazole /silica nanocomposites with chemical bonds between thiadiazole monomers and modified nanosilica surface were synthesized by free radical polymerization. Presence silica nanoparticles in the structure of nanocomposite showed effectively improve the physical and chemical properties of Producing polymers. A nanocomposite material with feature properties comparison with their polymers, The structure and morphology of the synthesis materials were investigated by FT-IR spectrum which display preparation new thiadiazole compounds and polymerization monomers. FT-IR showed disappeared double bond (C=C) of monomers, due to produce long chains of thiadiazole polymers and nanocomposite. X-ray diffraction gave idea ab
... Show More