Corncob is an agricultural biomass waste that was widely investigated as an adsorbent of contaminants after transforming it into activated carbon. In this research carbonization and chemical activation processes were achieved to synthesize corncob-activated carbon (CAC). Many pretreatment steps including crushing, grinding, and drying to obtain corncob powder were performed before the carbonization step. The carbonization of corncob powder has occurred in the absence of air at a temperature of 500 °C. The chemical activation was accomplished by using HCl as an acidic activation agent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) facilitated the characterization of (CAC). The results showed the CAC has non-uniform morphological features with different shapes of its active sites. The prepared CAC was utilized in adsorption of sulfur in its highly complex form of dibenzothiophene (DBT). Particular adsorption parameters of contacting time, temperature, and adsorbent dose were optimized to select the best conditions. These certain conditions are then applied in the adsorption of different DBT concentrations. The maximum removal of DBT reached around 83% at optimal conditions of contacting time (30 min), temperature (60 °C), and adsorbent dose (3 g L-1). The removal efficiency was significantly increased by decreasing the initial concentration of DBT. The experimental data fitted well with the Freundlich isotherm model compared with the Langmuir one. The maximum capacity of CAC for adsorption of DBT at equilibrium was 833.3 mg g-1 at 60 °C. The findings of this research introduce the CAC as a feasible adsorbent for removal DBT from simulated liquid petroleum fuels.
Ciprofloxacin is a broad spectrum fluoroquinolone, effective in the treatment of a wide range of infections, including genitourinary tract infections.In this study, bioadhesive vaginal tablets of ciprofloxacin hydrochloride were prepared by direct compression method using a combination of bioadhesivepolymers carbopol 934P(Cp), carboxymethylcellulose (CMC) and sodium alginate (SA) in different ratios.The prepared tablet formulations were characterized by measuring their swelling capacity, surface pH, bioadhesive properties, and in-vitro drug dissolution. It was found that the bioadhesive force was directly proportional to carbopol 934P content in different formulae and was further enhanced by the inclusion of carboxymethylcellulose.
... Show MorePraise be to God, Lord of the worlds, and prayers and peace be upon our master and beloved Muhammad, the wise guide and great teacher, the guide to a straight path, the one sent as a mercy to the worlds, and upon his good and chosen family, his chosen companions, the working scholars, and those who follow them in righteousness until the Day of Judgment.
And after:
One of the important controversial topics shared between the sciences of the Noble Hadith and the Fundamentals of God is the issue of the innovator in terms of accepting and rejecting his narration and testimony, and the difference in it leads to disagreement in many branches of jurisprudence that were based on texts narrated by innovated narrators or those accu
... Show MoreThe performance of asphalt pavements is crucial due to heavy traffic loads from civil and industrial developments. Various additives and modifiers are used in flexible roads to improve their resistance to deterioration caused by climatic changes. From this context, modifying the asphalt binder with polymers is popular in asphalt pavement construction. The present research investigates the effect of Polyethylene (PE) polymers in powder form on the characteristics of asphalt mixtures since these polymers are composed of hydrocarbons. It is similar to asphalt binders, making them very effective in enhancing the performance of neat asphalt produced from the oil refinery. To confirm this, two types of PE, High-Density PE (HDPE) and Low-Density P
... Show MoreFour rapid, accurate and very simple derivative spectrophotometric techniques were developed for the quantitative determination of binary mixtures of estradiol (E2) and progesterone (PRG) formulated as a capsule. Method I is the first derivative zero-crossing technique, derivative amplitudes were detected at the zero-crossing wavelength of 239.27 and 292.51 nm for the quantification of estradiol and 249.19 nm for Progesterone. Method II is ratio subtraction, progesterone was determined at λmax 240 nm after subtraction of interference exerted by estradiol. Method III is modified amplitude subtraction, which was established using derivative spectroscopy and mathematical manipulations. Method IIII is the absorbance ratio technique, absorba
... Show MoreNanocomposite was prepared using unsaturated polyester (UP) resin as a matrix and graphene nanoparticles as a reinforcement material in six percentage weights (0, 0.1, 0.2, 0.3, 1 and 1.5%). Mechanical, calorimetric and thermal studies were performed on the (UP) resin/graphene nanocomposite. All tests showed a clear improvement of all mechanical properties examined (hardness, flexural strength (F.S), impact strength (I.S) and tensile strength (T.S)) with increasing graphene percentage. In addition, the temperature of glass transition and thermal conductivity of this composite increased with increasing graphene content.
Kinetics and mechanism studies of oxidation of some α-amino acids (Proline, Arginine, Alanine) (AA) by N-Bromosuccinimide (NBS) by using conductivity method was carried out. The kinetic study showed that the reaction was first order with respect to NBS and AA. The effect of addition of HClO4 to the reaction was negative on the rate of reaction. The reaction was carried out at different temperatures in which * * * , S , G were calculated. The rate of reaction of AA was as follows: Proline > Arginine > Alanine
In this work, magnesium aluminate spinel (MA) (MgO 28 wt%, Al2O3 72 wt%) stoichiometric compound , were synthesized via solid state reaction (SSR) Single firing stage, and the impact of sintering on the physical properties and thermal properties as well as the fine structure and morphology of the ceramic product were examined. The Spinel samples were pressed at of (14 MPa) and sintering soaking time (2h). The effect of adding oxide titania (TiO2) was studied. The obtained powders were calcined at a temperature range of 1200 and 1400 °C. The calcined samples spinel were characterized by XRD, it showed the presence of developed spinel phase end also showed that the best catalyst is titania. The SEM image showed the high sintering temperat
... Show MoreThis work predicts the effect of thermal load distribution in polymer melt inside a mold and a die during injection and extrusion processes respectively on the structure properties of final product. Transient thermal and structure models of solidification process for polycarbonate polymer melt in a steel mold and die are studied in this research. Thermal solution obtained according to solidify the melt from 300 to 30Cand Biot number of 16 and 112 respectively for the mold and from 300 to 30 Cand Biot number of 16 for die. Thermal conductivity, and shear and Young Modulus of polycarbonate are temperature depending. Bonded contact between the polycarbonate and the steel surfaces is suggested to transfer the thermal load. The temperat
... Show More