A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solution graphs are shown. The results confirmed that the accuracy of this technique converges to the integer order of the issues.
A new panel method had been developed to account for unsteady nonlinear subsonic flow. Two boundary conditions were used to solve the potential flow about complex configurations of airplanes. Dirichlet boundary condition and Neumann formulation are frequently applied to the configurations that have thick and thin surfaces respectively. Mixed boundary conditions were used in the present work to simulate the connection between thick fuselage and thin wing surfaces. The matrix of linear equations was solved every time step in a marching technique with Kelvin's theorem for the unsteady wake modeling. To make the method closer to the experimental data, a Nonlinear stripe theory which is based on a two-dimensional viscous-inviscid interac
... Show MoreThe Cu(II) was found using a quick and uncomplicated procedure that involved reacting it with a freshly synthesized ligand to create an orange complex that had an absorbance peak of 481.5 nm in an acidic solution. The best conditions for the formation of the complex were studied from the concentration of the ligand, medium, the eff ect of the addition sequence, the eff ect of temperature, and the time of complex formation. The results obtained are scatter plot extending from 0.1–9 ppm and a linear range from 0.1–7 ppm. Relative standard deviation (RSD%) for n = 8 is less than 0.5, recovery % (R%) within acceptable values, correlation coeffi cient (r) equal 0.9986, coeffi cient of determination (r2) equal to 0.9973, and percentage capita
... Show MoreThis paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,
... Show MoreImage steganography is undoubtedly significant in the field of secure multimedia communication. The undetectability and high payload capacity are two of the important characteristics of any form of steganography. In this paper, the level of image security is improved by combining the steganography and cryptography techniques in order to produce the secured image. The proposed method depends on using LSBs as an indicator for hiding encrypted bits in dual tree complex wavelet coefficient DT-CWT. The cover image is divided into non overlapping blocks of size (3*3). After that, a Key is produced by extracting the center pixel (pc) from each block to encrypt each character in the secret text. The cover image is converted using DT-CWT, then the p
... Show MoreSteganography is the art of secret communication. Its purpose is to hide the presence of information, using, for example, images as covers. The frequency domain is well suited for embedding in image, since hiding in this frequency domain coefficients is robust to many attacks. This paper proposed hiding a secret image of size equal to quarter of the cover one. Set Partitioning in Hierarchal Trees (SPIHT) codec is used to code the secret image to achieve security. The proposed method applies Discrete Multiwavelet Transform (DMWT) for cover image. The coded bit stream of the secret image is embedded in the high frequency subbands of the transformed cover one. A scaling factors ? and ? in frequency domain control the quality of the stego
... Show MoreNonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though
... Show MoreThe fractional order partial differential equations (FPDEs) are generalizations of classical partial differential equations (PDEs). In this paper we examine the stability of the explicit and implicit finite difference methods to solve the initial-boundary value problem of the hyperbolic for one-sided and two sided fractional order partial differential equations (FPDEs). The stability (and convergence) result of this problem is discussed by using the Fourier series method (Von Neumanns Method).
This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreA new technique to study the telegraph equation, mostly familiar as damped wave equation is introduced in this study. This phenomenon is mostly rising in electromagnetic influences and production of electric signals. The proposed technique called as He-Fractional Laplace technique with help of Homotopy perturbation is utilized to found the exact and nearly approximated results of differential model and numerical example of telegraph equation or damped wave equation in this article. The most unique term of this technique is that, there is no worry to find the next iteration by integration in recurrence relation. As fractional Laplace integral transformation has some limitations in non-linear terms, to get the result of nonlinear term in
... Show MoreThe nonlinear refractive index and the nonlinear absorption coefficient of unmodified and functional poly(methyl methacrylate) PMMA films were studied before and after the addition of the filler by the z-scan technique, using a Q-switched Nd:YAG laser at two wavelengths: 532 nm and 1064 nm, and at three input energies (13, 33 and 53) mJ. Both linear and nonlinear refractive indices and absorption coefficients of polymer films were studied by using UV-VIS spectrophotometer. The results show that the creation of functional PMMA from unmodified PMMA will increase the nonlinear optical properties in the functional PMMA/copper matrix more than in the unmodified PMMA/copper matrix. Hence, the functional PMMA appears promising as a useful third
... Show More