AIM: The aim of this study was to measure the prevalence of myeloproliferative disorders in a sample of Iraqi patients and to measure the changes in patients’ blood parameters. BACKGROUND: Myeloproliferative disorders are a group of neoplasms affecting the bone marrow progenitor cells characterized by excess cells with a risk of transforming to acute leukemia. There is a gap in knowledge about the prevalence of Iraqi population. Thus, we investigated the prevalence and distribution of different types of myeloproliferative disorders in a sample of Iraqi patients. MATERIALS AND METHODS: Cross-sectional study is done at the National Center of Hematology from November 2019 till March 2020 on 75 patients who were diagnosed by a specialist hematopathologist to have one subtype of myeloproliferative disorders (MPDs). Blood samples were taken from them and analyzed to get complete blood count, blood film, bone marrow aspirate, and biopsy that were analyzed for each patient. Blood samples were taken from them and analyzed in terms of blood indices, which include red blood cells, white blood cells, and platelets. RESULTS: The 75 patients were found to be comprising 35 chronic myelogenous leukemia (CML) patients (46.7%), myelofibrosis 22 patients (29.3%), essential thrombocythemia (ET) 9 patients (12%), and polycythemia vera (PV) 9 patients (12%). In terms of male/female ratios, they were as follows: Myeloproliferative neoplasms (MPNs) male-to-female ratio is 1.2, CML= 0.94, myelofibrosis= 2.14 and ET= 0.5 and PV male-to-female ratio is 2. CONCLUSIONS : MPN male-to-female ratio in Iraq, which is 1.2, CML is the most common subtype. Regarding myelofibrosis, in our study, the male-to-female ratio is 2.14, which is much higher other countries. This could be attributed to high exposure to benzene and toluene which are well known to be causative agents for myelofibrosis. Regarding ET or PV, the male-to-female ratios were compatible with other countries.
Activated carbon derived from Ficus Binjamina agro-waste synthesized by pyro carbonic acid microwave method and treated with silicon oxide (SiO2) was used to enhance the adsorption capability of the malachite green (MG) dye. Three factors of concentration of dye, time of mixing, and the amount of activated carbon with four levels were used to investigate their effect on the MG removal efficiency. The results show that 0.4 g/L dosage, 80 mg/L dye concentration, and 40 min adsorption duration were found as an optimum conditions for 99.13% removal efficiency. The results also reveal that Freundlich isotherm and the pseudo-second-order kinetic models were the best models to describe the equilibrium adsorption data.
The δ-mixing of γ-transitions in 70As populated in the 32 70 70 33 Ge p n As (, ) γ reaction is calculated in the present work by using the a2-ratio methods. In one work we applied this method for two cases, the first one is for pure transition and the sacend one is for non pure transition, We take into account the experimental a2-coefficient for previous works and δ -values for one transition only.The results obtained are, in general, in a good agreement within associated errors, with those reported previously , the discrepancies that occur are due to inaccuracies existing in the experimental data of the previous works.
The research included preparation of new iron(II) complexes with mixed ligands including benzilazine(BA) and semicarbazone ligands {benzilsemicarbazone- BSCH or benzilbis(semicarba-zone)- BBSCH2 or salicylaldehydesemicarbazone- SSCH2 or benzoinsemicarbazone- B'SCH2}.by classical and microwave methods. The resulted complexes have been characterized using chemical and physical methods. The study suggested that the above ligands form ionic complexes having formulae [Fe(SCHi)(BA)(Cl)m](Cl)2-m {where SCH, BSCH, BBSCH2, SSCH¬2 or B'SCH2 ligands; m=1 or 2}. Hexacoordinated mononuclear complexes have been investigated by this study and having octahedral geometries. The effect of laser ray type visible region have been studied on solid ligands and
... Show MoreThe research examines the mechanism of application of )ISO 21001: 2018( in the Energy Branch- Electromechanical Engineering at the University of Technology to achieve the quality of the educational service to prepare the branch to obtain the certificate of conformity with the requirements of) ISO 21001: 2018(, the necessary data were collected Depending on the (CHEKLIST) of (ISO 21001: 2018), field interviews and records of the concerned department, The researchers reached a number of results, the most prominent of which was the adoption of high quality leadership leaders and their willingness to implement the standard requirements, The university has a basic structure that qualifies it to implement the international standard, as
... Show MoreThis study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show MoreAl2O3 and Al2O3–Al composite coatings were deposited on steel specimens using Oxy-acetylene gas thermal spray gun. Alumina was mixed with Aluminum in six groups of concentrations (0, 5, 10,12,15 and 20% ) Al2O3, Specimens were tested for corrosion using Potentiodynamic polarization technique. Further tests were conducted for the effect of temperature on polarization curve and the hardness tests for the coated specimens. At first, Modelling was carried out using MINITAB-19, least square method, as a 2nd degree nonlinear model, bad results were achieved because of the high nonlinearity. Better result w
The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.