A remarkable correlation between chaotic systems and cryptography has been established with sensitivity to initial states, unpredictability, and complex behaviors. In one development, stages of a chaotic stream cipher are applied to a discrete chaotic dynamic system for the generation of pseudorandom bits. Some of these generators are based on 1D chaotic map and others on 2D ones. In the current study, a pseudorandom bit generator (PRBG) based on a new 2D chaotic logistic map is proposed that runs side-by-side and commences from random independent initial states. The structure of the proposed model consists of the three components of a mouse input device, the proposed 2D chaotic system, and an initial permutation (IP) table. Statist
... Show MoreThis paper proposes a new encryption method. It combines two cipher algorithms, i.e., DES and AES, to generate hybrid keys. This combination strengthens the proposed W-method by generating high randomized keys. Two points can represent the reliability of any encryption technique. Firstly, is the key generation; therefore, our approach merges 64 bits of DES with 64 bits of AES to produce 128 bits as a root key for all remaining keys that are 15. This complexity increases the level of the ciphering process. Moreover, it shifts the operation one bit only to the right. Secondly is the nature of the encryption process. It includes two keys and mixes one round of DES with one round of AES to reduce the performance time. The W-method deals with
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreIn this paper, the structure of and have been introduced and studied. We also obtain that a is of a if and only if there exists an on such that . In addition, we obtain that of if and only if there is an on such that , where are subspaces of with eigenvalues 1 and −1, respectively. We also find t that the existence of on implies that there exists a compatible under appropriate condition.
Protecting information sent through insecure internet channels is a significant challenge facing researchers. In this paper, we present a novel method for image data encryption that combines chaotic maps with linear feedback shift registers in two stages. In the first stage, the image is divided into two parts. Then, the locations of the pixels of each part are redistributed through the random numbers key, which is generated using linear feedback shift registers. The second stage includes segmenting the image into the three primary colors red, green, and blue (RGB); then, the data for each color is encrypted through one of three keys that are generated using three-dimensional chaotic maps. Many statistical tests (entropy, peak signa
... Show MoreCrime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
Offline Arabic handwritten recognition lies in a major field of challenge due to the changing styles of writing from one individual to another. It is difficult to recognize the Arabic handwritten because of the same appearance of the different characters. In this paper a proposed method for Offline Arabic handwritten recognition. The proposed method for recognition hand-written Arabic word without segmentation to sub letters based on feature extraction scale invariant feature transform (SIFT) and support vector machines (SVMs) to enhance the recognition accuracy. The proposed method experimented using (AHDB) database. The experiment result show (99.08) recognition rate.
Seventy exudative lymphocytic pleural fluid specimens of patients with suspected tuberculous pleural effusion submitted to the National Reference Laboratory of tuberculosis/Baghdad from October 2012 to February 2013. These effusions were due to tuberculosis pleuritis (n=12) and non-tuberculosis pleuritis (n=58). The following parameters were analyzed: protein concentration, glucose concentration, lactate dehydrogenase (LDH) concentration and adenosine deaminase activity (ADA). As a result, the protein concentration was higher in TPE patients (8.80 ± 0.89 g/dl) than it's concentration in non-TPE patients (7.61 ± 0.54 g/dl), as well as LDH concentration was (3366.58 ± 284.28 U/L) in TPE patients and (3024.12 ± 116.84 U/L) in non-TPE pa
... Show MoreA proposed feature extraction algorithm for handwriting Arabic words. The proposed method uses a 4 levels discrete wavelet transform (DWT) on binary image. sliding window on wavelet space and computes the stander derivation for each window. The extracted features were classified with multiple Support Vector Machine (SVM) classifiers. The proposed method simulated with a proposed data set from different writers. The experimental results of the simulation show 94.44% recognition rate.