In this paper synthesis and extensive investigation of the microstructural and optoelectronic properties of polyaniline (PANI), Multiwalled carbon nanotube (MWCNTs) and MWCNTs reinforced PANI composites is presented. MWCNTs- PANI composites have been deposited by spin coating on silicon wafer substrate. Fourier Transform Infrared Spectroscopy shows no difference between PANI and its composites. However a change in peaks shape and absorption intensity has been observed. A strong effect of the MWCNTs weight percentage on the PANI/MWCNTs composites has been demonstrated. It was find that the thermal stability improved with increasing MWCNTs content. The optical band gap of the PANI thin films has been effectively tuned from 2.38 to 1.78 eV as the MWCNTs content increases from 5 to 15 wt.% The Current–voltage (I–V) characteristics of the fabricated devices shows a significant improvement in current with MWCNTs weight percentage content. It was observed a strong enhancement of composite in the conductivity as well as in the current level. The microscopic images show that the dispersion of MWCNTs into PANI leads to the formation a new conductive pathway.
The objective of this research was to investigate the effect of replacing fat(shortening) with different percentages of tahena on the quality properties (physiochemical and sensory ) of shortened cake.The percentages of moisture,protein ,fat and ash of cake increased significantly(p<0.05) as the replacement was increased .The highest increase percentages were 10,48,5,and 90 %,respectivly, at 100% replacement .Carbohydrate,however,decreased by 10%at 100% replacement .these findings may indicate improvement of cake nutritional value.Standing height,as an indicator of cake volume, also increased significantly by 4% at the 50% replacement then it decreased by 4% 100% replacement level. Basic formula (control) has signific
... Show MoreThe dielectric properties of polyvinyl chloride (PVC)-MnCl2 composite were studied by using the impedance technique. The measurements were carried out as a function of frequency in the range from 10 Hz to 13 MHz and temperature range from 27oC to 55oC. Using a composite of 20 wt. % MnCl2 by weight, it was found that the dielectric constants and the dielectric loss of the prepared films increase with the increasing temperature at law frequency and the enhancement of the ionic conduction which is confirmed by the increase the of AC. conductivity and the decrease of the activation energy of the conduction mechanism at high applied frequency. The observed relaxation and polarization effects of composite a
... Show MoreUnsaturated soil can raise many geotechnical problems upon wetting and drying resulting in swelling upon wetting and collapsing (shrinkage) in drying and changing in the soil shear strength. The classical principles of saturated soil are often not suitable in explaining these phenomena. In this study, expansive soil (bentonite and sand) were tested in different water contents and dry unit weight chosen from the compaction curve to examine the effect of water content change on soil properties (swelling pressure, expansion index, shear strength (soil cohesion) and soil suction by the filter paper method). The physical properties of these soils were studied by conducting series of tests in laboratory. Fitting methods
... Show MoreEpoxy (EP) – Silica (SiO2) composites are well known composites used in microelectronic industry . So it is important to study their dielectric behavior under different conditions such as
the presence carbon black (UV absorber) and immersion in the water for 30 days .
Dielectric properties were calculated over the frequency range 102 – 106 Hz for epoxy composites with different weight % of micrometer 1.5μm SiO2 particles (60%, 65% and 70wt%) modified with 0.5wt% silane coupling agent to improve adhesion between EP and SiO2 phases .
The corrosion behavior of carbon steel at different Temperatures and in water containing different sodium chloride
concentrations under 3 bar pressure has been investigated using weight loss method . The carbon steel specimens were
immersed in water containing (100,400,700,1000PPM) of NaCl solution and under temperature was increased from
(90-120ºC) under pressures of 3 bar. The results of this investigation indicated that corrosion rate increased with NaCl
concentrations and Temperature.
The activation and reaction energies of the C-C and C-H bonds cleavage in pyrene molecule are calculated applying the Density Functional Theory and 6-311G Gaussian basis. Different values for the energies result for the different bonds, depending on the location of the bond and the structure of the corresponding transition states. The C-C bond cleavage reactions include H atom migration, in many cases, leading to the formation of CH2 groups and H-C≡C- acetylenic fragments. The activation energy values of the C-C reactions are greater than 190.00 kcal/mol for all bonds, those for the C-H bonds are greater than 160.00 kcal/mol. The reaction energy values for the C-C bonds range between 56.497 to 191.503 kcal/mol. As for the C-H cleavage rea
... Show MoreIn this research we prepared PbS thin films with vacuum thermo evaporation process and chemical spray pyrolysis. Structure properties were studied for PbS thin films through (XRD) measurement. PbS thin films growth appear as Polycrystalline cubic and sharp peak with directional (200) then calculated Lattice constant (a) and the values are (5.9358)Ã… for (PbS) films prepared by thermo evaporation , (2.978-5.969 Ã…) for films prepared by chemical spray pyrolysis at temperature degree (553K , 573K) sequence .Then it was found that the grain size for (PbS) thin films prepared by thermo evaporation is (335.81)Ã… while the grai
... Show MoreThis research studies the effect of addition of some nanoparticles
(MgO, CuO) and grain size (30,40nm) on some physical properties
(impact strength, hardness and thermal conductivity) for a matrix
blend of epoxy resin with SBR rubber. Hand –Lay up method was
used to prepare the samples. All samples were immersed in water for
9 weeks.
The Results showed decreased in the values of impact strength and
hardness but increased the coefficient of thermal conductivity.
Semiconductor-based photocatalytic processes are widely applied as ecofriendly technology for degrading organic pollutants. Establishing photocatalytic heterojunctions with Z-type photocarriers transfer pathways is projected to be a superb strategy to enhance photocatalytic behavior. In this paper, novel and stable (0D/2D) heterojunctions of CoS-embedded boron-doped g-C3N4 (CoS/BCN) with a high rate of charges transfer/separation were assembled for degradation of malachite green dye (MG). The CoS/BCN photocatalyst achieves a photodegradation efficiency of 96.9 % within 1 h of LED illumination, which is 2.5 and 1.4-fold enhancement compared with bare g-C3N4 and BCN, respectively. Besides, the results of species-trapping trials exhibited that
... Show MoreThe current work is concerned with preparing cobalt manganese ferrite (Co1-xMnxFe2O4) with different concentrations of cobalt and manganese (x=0.2, 0.4, and 0.6) and decorating it with polyaniline (PAni) for use in supercapacitive applications. The results of the X-ray diffraction (XRD) manifested a broad peak of PAni and a cubic structure of cobalt manganese ferrite having crystal size between 60 nm and 138 nm, which decreases with increasing concentration of Mn. The field emission scanning electron microscopy (FESEM) images evidenced that the PAni has nanofiber (NF) structures, according to the method of preparation, where the hydrothermal method was used. The magnetic properties of the prepared ferrite, as well as the prepared PAni/Co1-x
... Show More