In this paper, we characterize the percolation condition for a continuum secondary cognitive radio network under the SINR model. We show that the well-established condition for continuum percolation does not hold true in the SINR regime. Thus, we find the condition under which a cognitive radio network percolates. We argue that due to the SINR requirements of the secondaries along with the interference tolerance of the primaries, not all the deployed secondary nodes necessarily contribute towards the percolation process- even though they might participate in the communication process. We model the invisibility of such nodes using the concept of Poisson thinning, both in the presence and absence of primaries. Invisibility occurs due to nodes that i) cannot decode transmissions except from their nearest neighbors, ii) are always interfered, and iii) belong to isolated components. We find the thinning probability in terms of primary and secondary densities, communication radii, and interference cancellation coefficient. Further, we show how the effective coverage radius shrinks which also adds to the thinning. Theoretical findings are validated through simulations.
In The Bluest Eye (1970), the American-African writer, Toni Morrison explores how
Western standards of ideal beauty are created and propagated with and among the black
community. The novel not only portrays the lives of those whose dark skinned and Negroid
features blight their lives; it also shows how the standard of white beauty, when imposed on
black youth, can drastically damage one’s self-love and esteem which usually occurs when
beauty goes unrecognized. Morrison in this novel focuses on the damage that the black
women characters suffer through the construction of femininity in a racialised society where
whiteness is used as a standard of beauty.
The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show More
It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna
... Show MoreIt is known that life is as series of variety of difficult problems that individual looks
forward to overcome so as to achieve adaptation and to reach the desired aims .The transition
of the students from the school stage to the stage of the university is actually regarded a
dramatic change where students face when they enter university life that differs from what
they lived in secondary school.
The executive functions are considered the main element that participate in solving the
problems of high orders , because it involves the mental abilities that assist individual to
think and initiative as well as solving problems .
These functions include operational planning and the activated memory and inhibition of
q
Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreIn this review of literature, the light will be concentrated on the local drugs delivery systems for treating the periodontal diseases. Principles, types, advantages and indications of each type will be discussed in this paper.