Accurate calculation of transient overvoltages and dielectric stresses from fast-front excitations is required to obtain an optimal dielectric design of power components subjected to these conditions, which are commonly due to switching and lightning, as well as utilization of power-electronic devices. Toroidal transformers are generally used at the low voltage level. However, recent investigations and developments have explored their use at the medium voltage level. This paper analyzes the model-based improvement of the insulation design of medium voltage toroidal transformers. Lumped and distributed parameter models are used and compared to predict the transient response and dielectric stress along the transformer winding. The parameters of the toroidal transformer are computed using the finite element method considering a three-dimensional geometry. Different strategies for insulation design are proposed by means of optimal insulation thickness and electrostatic shield to reduce transient overvoltage and dielectric stress. The results show that the proposed optimal insulation design based on particle swarm optimization with electrostatic shield can substantially reduce the dielectric stress and dielectric distances. Comparison between simulations and experimental results demonstrates that the frequency domain modeling approach results in accurate calculation of transient overvoltages produced by fast front excitation and can be used effectively for insulation design.
This paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect
... Show MoreThe current research dealt with contrastive structures and the culture of reception in the design of interior spaces as embodying a rhetorical aspect that reveals formal values related to the meanings of beauty through the mechanisms of symbolism and interpretation that drives mental behavior and is in harmony with intellectual data and its performance function.
Hence, the research in the first chapter dealt with the research problem, the need for it, and the extent of the necessity that calls for studying contrastive structures in interior design and architecture, and touching and searching for what is the paradox and its representations for the recipient, in which the interior designer plays an active role in presenting the best cre
This paper proposes a new structure for a Fractional Order Sliding Mode Controller (FOSMC) to control a Twin Rotor Aerodynamic System (TRAS). The new structure is composed by defining two 3-dimensional sliding mode surfaces for the TRAS model and introducing fractional order derivative integral in the state variables as well as in the control action. The parameters of the controller are determined so as to minimize the Integral of Time multiplied by Absolute Error (ITAE) performance index. Through comparison, this controller outperforms its integer counterpart in many specifications, such as reducing the delay time, rise time, percentage overshoot, settling time, time to reach the sliding surface, and amplitude of chattering in control inpu
... Show MoreLowering the emission, fuel economy and torque management are the essential
requirements in the recent development in the automobile industry. The main engine control
input that satisfies the above requirements is the throttling angle which adjusts the air mass
flow rate to the engine port. Due to the uncertainty and the presence of the nonlinear
components in its dynamical model, the sliding mode control theory is utilized in this work
for the throttle valve angle control system to design a robust controller for this system in the
presence of a nonlinear spring and Coulomb friction. A continuous sliding mode control law
which consists of a saturation function, instead of a signum function, and the integral of
ano
The current research deals with studying the aesthetics of symbolic values in the design of internal spaces and their connotations through their existence as a material value, as well as the symbolic meanings and their connotations that touch the spiritual and emotional side of the human being as an intangible value, and the research included four chapters, so the research problem was embodied by the following question (What is the role of values Symbolism and aesthetics in the design of interior spaces)? Therefore, the aim was to clarify the role of symbolic values and their aesthetics in the design of internal spaces. The first chapter included the importance of research, the need for it, the limits of the research and its terminology.
... Show MoreThis paper presents an improved technique on Ant Colony Optimization (ACO) algorithm. The procedure is applied on Single Machine with Infinite Bus (SMIB) system with power system stabilizer (PSS) at three different loading regimes. The simulations are made by using MATLAB software. The results show that by using Improved Ant Colony Optimization (IACO) the system will give better performance with less number of iterations as it compared with a previous modification on ACO. In addition, the probability of selecting the arc depends on the best ant performance and the evaporation rate.
This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreThe research aims to estimate missing values using covariance analysis method Coons way to the variable response or dependent variable that represents the main character studied in a type of multi-factor designs experiments called split block-design (SBED) so as to increase the accuracy of the analysis results and the accuracy of statistical tests based on this type of designs. as it was noted in the theoretical aspect to the design of dissident sectors and statistical analysis have to analyze the variation in the experience of experiment )SBED) and the use of covariance way coons analysis according to two methods to estimate the missing value, either in the practical side of it has been implemented field experiment wheat crop in
... Show More