Accurate calculation of transient overvoltages and dielectric stresses from fast-front excitations is required to obtain an optimal dielectric design of power components subjected to these conditions, which are commonly due to switching and lightning, as well as utilization of power-electronic devices. Toroidal transformers are generally used at the low voltage level. However, recent investigations and developments have explored their use at the medium voltage level. This paper analyzes the model-based improvement of the insulation design of medium voltage toroidal transformers. Lumped and distributed parameter models are used and compared to predict the transient response and dielectric stress along the transformer winding. The parameters of the toroidal transformer are computed using the finite element method considering a three-dimensional geometry. Different strategies for insulation design are proposed by means of optimal insulation thickness and electrostatic shield to reduce transient overvoltage and dielectric stress. The results show that the proposed optimal insulation design based on particle swarm optimization with electrostatic shield can substantially reduce the dielectric stress and dielectric distances. Comparison between simulations and experimental results demonstrates that the frequency domain modeling approach results in accurate calculation of transient overvoltages produced by fast front excitation and can be used effectively for insulation design.
A computer theoretical s1udy has been carried out in field of opto - clcctroniccs, to design an electron gun using the space charge effect.
The distribution of axial potential upon the two -electrode
immersion lens of (L=l4mm) has been carried out using Poisons equation and the tinite clement method; knowing the first 11nd second derivation of the axial potential and the solution of paraxial ray equation, the optical prop
... Show MoreThis study deals with the corrosion inhibition of metal corrosion process of medium carbon steel using 1M HCl for kinetic studies and rate reaction determination. The weight loss method is applied to pieces of Medium carbon steel divided to Cubans with dimensions (0.4*2*2.4) cm , and use Tafel Extrapolation Method, the samples were polished using carbide silicon paper with dimensions of (180,200,400,600,800,1000). The samples were immersed in the alcoholic medium ethanol at a temperature 293K for 3hr. Natural inhibitor Kujarat Tea (Hibiscus sabdarriffa L.) is used which is extracted in aqueous and alcoholic medium, different concentrations (1000،2000, 3000) ppm have been used ; The best concentration found through the results is a
... Show MoreThis study deals with the corrosion inhibition of metal corrosion process of medium carbon steel using 1M HCl for kinetic studies and rate reaction determination. The weight loss method is applied to pieces of Medium carbon steel divided to Cubans with dimensions (0.4*2*2.4) cm , and use Tafel Extrapolation Method, the samples were polished using carbide silicon paper with dimensions of (180,200,400,600,800,1000). The samples were immersed in the alcoholic medium ethanol at a temperature 293K for 3hr. Natural inhibitor Kujarat Tea (Hibiscus sabdarriffa L.) is used which is extracted in aqueous and alcoholic medium, different concentrations (1000،2000, 3000) ppm have been used ; The best concentration found through the results is a conce
... Show MoreIn this paper, A.C conductivity of micro and nano grain size- TiO2 filled epoxy composites is measured. The dielectric material used is epoxy resin, while micro and nano-sized titanium dioxide (TiO2) of grain size (1.5μm, and 50nm) was used as filler at low filler concentrations by weight (3%, and 5%). Additionally the effect of annealing temperature range (293-373)º K and at a frequency range of 102-106 Hz on the A.C conductivity of the various specimens was studied.
The result of real permittivity for micro and nanocomposite show that the real permittivity increases with decreasing frequency at range of 102-106Hz. The micron-filled material has a higher real relative permittivity than the nano-filled this is true at all the temper
The Dielectric properties of EP/TiO2 and MgO nanocomposite at
a frequency range of (102-106 Hz) were studied. The composite were
prepared with the state volume ratio (0, 0.05, 0.1) for EP/TiO2 and
MgO respectively. The impedance, dielectric constant and dielectric
loss were found decrease with frequency increase.
Two‐dimensional buoyancy‐induced flow and heat transfer inside a square enclosure partially occupied by copper metallic foam subjected to a symmetric side cooling and constant heat flux bottom heating was tested numerically. Finite Element Method was employed to solve the governing partial differential equations of the flow field and the Local Thermal Equilibrium model was used for the energy equation. The system boundaries were defined as lower heated wall by constant heat flux, cooled lateral walls, and insulated top wall. The three parameters elected to conduct the study are heater length (7 ≤
The dose rate for bremsstrahlung radiation from beta particles with energy (1.710) MeV and (2.28) MeV which comes from (32P and 90Y) beta source respectively have been calculated through six materials (polyethylene, wood, aluminum, iron, tungsten and lead) for first shielding material with thickness (x=1) mm which are putting between beta sources and second shield (polyethylene, aluminum and lead) with thickness (1, 2 &4) mm have been calculated. The distance between beta source and second shield is constant (D=1) cm. This dose rate was found by program called Rad Pro Calculator (version 3.26). The results of dose rate of beta particles were plotted as a function to the atomic number (Z) for first shield materials for each
... Show MoreThe dose rate for bremsstrahlung radiation from beta particles with energy (1.710) MeV and (2.28) MeV which comes from (32P and 90Y) beta source respectively have been calculated through six materials (polyethylene, wood, aluminum, iron, tungsten and lead) for first shielding material with thickness (x=1) mm which are putting between beta sources and second shield (polyethylene, aluminum and lead) with thickness (1, 2 &4) mm have been calculated. The distance between beta source and second shield is constant (D=1) cm. This dose rate was found by program called Rad Pro Calculator (version 3.26). The results of dose rate of beta particles were plotted as a function to the atomic number (Z) for first shield materials for each
... Show More