The gas sensing properties of Co3O4and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.The sensitivity, response time and recovery time to a H2S reducing gas were tested at different operating temperatures. The resistance changes with exposure to the test gas. The results reveal that the Co3O4:10%Ypossesses the highest sensitivity around 80% at a 100oC operating temperature when exposed to the reducing gas H2S with 0.8sec for both recovery and response times. Cobalt
The properties of structural and optical of pure and doped nano titanium dioxide (TiO2) films, prepared using chemical spray pyrolysis (CPS) technique, with different nanosize nickel oxide (NiO) concentrations in the range (3-9)wt% have been studied. X-Ray diffraction (XRD) technique where using to analysis the structure properties of the prepared thin films. The results revealed that the structure properties of TiO2 have polycrystalline structure with anatase phase. The parameters, energy gap, extinction coefficient, refractive index, real and imaginary parts were studied using absorbance and transmittance measurements from a computerized ultraviolet visible spectrophotometer (Shimadzu UV-1601 PC) in the wavelength
... Show MoreIn this paper, the effect of films thickness on the structural and optical properties of gold (Au) thin films prepared by the DC sputtering method was studied. At three different deposition times, three samples of gold thin films of three different thicknesses (200,400, and 600 nm) were prepared. X-ray diffraction patterns, scanning electron microscopy (SEM), and atomic force microscopy (AFM) images, as well as optical spectroscopy, were used to characterize thin films. The crystalline structure of gold thin films was determined by the XRD pattern which showed to be cubic phase and polycrystalline in nature. The preferred orientation was (111) at 2Ѳ equal 37.4. The effect of deposition time on the morphology of the deposited films was v
... Show More
Copper oxide thin films were synthesized by using spray pyrolysis deposition technique, in the temperature around 400°C in atmosphere from alcoholic solutions. Copper (II) chloride as precursor and glass as a substrate. The textural and structural properties of the films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD). The average particle size determined from the AFM images ranged from 30 to 90 nm and the roughness average was equal to 9.3 nm. The XRD patterns revealed the formation of a polycrystalline hexagonal CuO. The absorption and transmission spectrum, band gap, film thickness was investigated. The films were tested as an |
Aromatic Schiff-bases are known to have antibacterial activity, but most of these compounds are sparingly soluble in water. The present work describes the synthesis of new Schiff-bases derived from branched aminosugars. Treatment of 3-Amino-3-Cyano-3-Deoxy-1,2:5,6-Di-O-Isopropylene-α-D-Allofuranose (1) with the aldehydes (2) under reflux in methanol afforded the Schiff-bases (3) in good yields. The new Schiff-bases were in accord with their NMR, IR spectral data and elemental analysis.
a-Ge: As thin films have prepared by thermal evaporation teclmique, then they were annealing at various temperatures within the
range (373-473) K. The result of X-ray di ffraction spectrum was showing that all the specimens remained in amorphous structure before and after annealing process. This paper studied the effect of annealing temperature as a function of wavelength on the optical energy gap and optical constants for the a-Ge:As thin films . Results have showed that there was an increasing in the optical energy gap
{Egopt) values with the in ,;rcasing of the annealing temperatures within
... Show MoreChalcopyrite thin films were one-step potentiostatically deposited onto stainless steel plates from aqueous solution containing CuSO4, In2(SO4)3 and Na2S2O3.The ratio of (In3+:Cu2+) which involved in the solution and The effect of cathodic potentials on the structural had been studied. X-ray diffraction (XRD) patterns for deposited films showed that the suitable ratio of (In3+:Cu2+) =6:1, and suitable voltage is -0.90 V versus (Ag/AgCl) reference electrode
The effect of annealing temperature (Ta) on the electrical properties like ,D.C electrical conductivity (σ DC), activation energy (Ea),A.C conductivity σa.c ,real and imaginary (ε1,ε2) of dielectric constants ,relaxation time (τ) has been measured of ZnS thin films (350 nm) in thickness which were prepared at room temperature (R.T) using thermal evaporation under vacuum . The results showed that σD.C increases while the activation energy values(Ea) decreases with increasing of annealing temperature.(Ta) from 303- 423 K .
The density of charge carriers (nH) and Hall mobility (μH) increases also with increasing of annealing temperature Hall effect measurements showed that ZnS films were n-type converted to p-type at high annealin
Cadmium Oxide thin films were deposited on glass substrate by spray pyrolysis technique at different temperatures (300,350,400, 500)oC. The optical properties of the films were studied in this work. The optical band-gap was determined from absorption spectra, it was found that the optical band-gap was within the range of (2.5-2.56)eV also width of localized states and another optical properties.
Superconducting thin films of Bi1.6Pb0.4Sr2Ca2Cu2.2Zn0.8O10 system were prepared by depositing the film onto silicon (111) substrate by pulsed laser deposition. Annealing treatment and superconducting properties were investigated by XRD and four probe resistivity measurement. The analysis reveals the evolution of the minor phase of the films 2212 phase to 2223 phase, when the film was annealed at 820 °C. Also the films have superconducting behavior with transition temperature ≥90K.
Schiff base (methyl 6-(2- (4-hydroxyphenyl) -2- (1-phenyl ethyl ideneamino) acetamido) -3, 3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] heptane-2-carboxylate)Co(II), Ni(II), Cu (II), Zn (II), and Hg(II)] ions were employed to make certain complexes. Metal analysis M percent, elemental chemical analysis (C.H.N.S), and other standard physico-chemical methods were used. Magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identified. Theoretical treatment of the generated complexes in the gas phase was performed using the (hyperchem-8.07) program for molecular mechanics and semi-empirical computations. The (PM3) approach was used to determine the heat of formation (ΔH˚f), binding energy (ΔEb), an
... Show More