Fiber‐reinforced elastic laminated composites are extensively used in several domains owing to their high specific stiffness and strength and low specific density. Several studies were performed to ascertain the factors that affect the composite plates’ dynamic properties. This study aims to derive a mathematical model for the dynamic response of the processed composite material in the form of an annular circular shape made of polyester/E‐glass composite. The mathematical model was developed based on modified classical annular circular plate theory under dynamic loading, and all its formulas were solved using MATLAB 2023. The mathematical model was also verified with real experimental work involving the vibration test of the fabricated composite plate. The composite plate was processed by reinforcing the polyester matrix with E‐glass fibers with a 50% volume fraction each by using the handy lay‐up method. After fabrication, the composite plate was tested with a universal vibration tester, where the plate was impacted and released to free vibration, and the deflection was measured experimentally to compare it with the theoretical value calculated from the derived model. The plate was tested under two boundary conditions, namely, simply and built‐in supported. The findings show good agreement between theoretical and experimental plate deflections at different angles, particularly at built‐in supported boundary conditions. Also, a higher natural frequency was recorded at this condition compared to others, and this may be ascribed to the higher shear stresses involved due to large moments at the ends along with supporting. Meanwhile, the real experimental spectrum of the built‐in condition was higher than others, as the sig view curve revealed.
In this research a study of the effect of quality, sequential and directional layers for three types of fibers are:(Kevlar fibers-49 woven roving and E- glass fiber woven roving and random) on the fatigue property using epoxy as matrix. The test specimens were prepared by hand lay-up method the epoxy resin used as a matrix type (Quick mast 105) in prepared material composit . Sinusoidal wave which is formed of variable stress amplitudes at 15 Hz cycles was employed in the fatigue test ( 10 mm )and (15mm) value 0f deflection arrival to numbers of cycle failure limit, by rotary bending method by ( S-N) curves this curves has been determined ( life , limit and fa
... Show MoreA new panel method had been developed to account for unsteady nonlinear subsonic flow. Two boundary conditions were used to solve the potential flow about complex configurations of airplanes. Dirichlet boundary condition and Neumann formulation are frequently applied to the configurations that have thick and thin surfaces respectively. Mixed boundary conditions were used in the present work to simulate the connection between thick fuselage and thin wing surfaces. The matrix of linear equations was solved every time step in a marching technique with Kelvin's theorem for the unsteady wake modeling. To make the method closer to the experimental data, a Nonlinear stripe theory which is based on a two-dimensional viscous-inviscid interac
... Show MoreShade in house gardens is one of the problems that hinder the growth of lawn and its distribution in the soil, where the types of lawns differ in their durability and adaptation to shade. The research aims to know the resistance of some species of lawn plants to shade and to know the appropriate fertilization procedures that can be followed to reduce the negative effects. The study was conducted in the Amiriya district of Baghdad in a house garden. Three varieties of lawn plants Bermuda, Gazon, and Trifoglio were planted. Five fertilization treatments (contained N and P elements) and the control were used. The sunlight density with the temperature of the study field locations were estimated using the AMT-300 and the vegetation coverage perc
... Show MoreFor the design of a deep foundation, piles are presumed to transfer the axial and lateral loads into the ground. However, the effects of the combined loads are generally ignored in engineering practice since there are uncertainties to the precise definition of soil–pile interactions. Hence, for technical discussions of the soil–pile interactions due to dynamic loads, a three-dimensional finite element model was developed to evaluate the soil pile performance based on the 1 g shaking table test. The static loads consisted of 50% of the allowable vertical pile capacity and 50% of the allowable lateral pile capacity. The dynamic loads were taken from the recorded data of the Kobe e
Encasing glass fiber reinforced polymer (GFRP) beam with reinforced concrete (RC) improves stability, prevents buckling of the web, and enhances the fire resistance efficiency. This paper provides experimental and numerical investigations on the flexural performance of RC specimens composite with encased pultruded GFRP I-sections. The effect of using shear studs to improve the composite interaction between the GFRP beam and concrete was explored. Three specimens were tested under three-point loading. The deformations, strains in the GFRP beams, and slippages between the GFRP beams and concrete were recorded. The embedded GFRP beam enhanced the peak loads by 65% and 51% for the composite specimens with and without shear connectors,
... Show More