Fiber‐reinforced elastic laminated composites are extensively used in several domains owing to their high specific stiffness and strength and low specific density. Several studies were performed to ascertain the factors that affect the composite plates’ dynamic properties. This study aims to derive a mathematical model for the dynamic response of the processed composite material in the form of an annular circular shape made of polyester/E‐glass composite. The mathematical model was developed based on modified classical annular circular plate theory under dynamic loading, and all its formulas were solved using MATLAB 2023. The mathematical model was also verified with real experimental work involving the vibration test of the fabricated composite plate. The composite plate was processed by reinforcing the polyester matrix with E‐glass fibers with a 50% volume fraction each by using the handy lay‐up method. After fabrication, the composite plate was tested with a universal vibration tester, where the plate was impacted and released to free vibration, and the deflection was measured experimentally to compare it with the theoretical value calculated from the derived model. The plate was tested under two boundary conditions, namely, simply and built‐in supported. The findings show good agreement between theoretical and experimental plate deflections at different angles, particularly at built‐in supported boundary conditions. Also, a higher natural frequency was recorded at this condition compared to others, and this may be ascribed to the higher shear stresses involved due to large moments at the ends along with supporting. Meanwhile, the real experimental spectrum of the built‐in condition was higher than others, as the sig view curve revealed.
Although the axial aptitude and pile load transfer under static loading have been extensively documented, the dynamic axial reaction, on the other hand, requires further investigation. During a seismic event, the pile load applied may increase, while the soil load carrying capacity may decrease due to the shaking, resulting in additional settlement. The researchers concentrated their efforts on determining the cause of extensive damage to the piles after the seismic event. Such failures were linked to discontinuities in the subsoil due to abrupt differences in soil stiffness, and so actions were called kinematic impact of the earthquake on piles depending on the outcomes of laboratory
This paper deals with an analytical study of the flow of an incompressible generalized Burgers’ fluid (GBF) in an annular pipe. We discussed in this problem the flow induced by an impulsive pressure gradient and compare the results with flow due to a constant pressure gradient. Analytic solutions for velocity is earned by using discrete Laplace transform (DLT) of the sequential fractional derivatives (FD) and finite Hankel transform (FHT). The influences of different parameters are analyzed on a velocity distribution characteristics and a comparison between two cases is also presented, and discussed in details. Eventually, the figures are plotted to exhibit these effects.
Frequency equations for rectangular plate model with and without the thermoelastic effect for the cases are: all edges are simply supported, all edges are clamped and two opposite edges are clamped others are simply supported. These were obtained through direct method for simply supported ends using Hamilton’s principle with minimizing Ritz method to total energy (strain and kinetic) for the rest of the boundary conditions. The effect of restraining edges on the frequency and mode shape has been considered. Distributions temperatures have been considered as a uniform temperature the effect of developed thermal stresses due to restrictions of ends conditions on vibration characteristics of a plate with different
... Show MoreThe purpose of this research is to implement the orthogonal polynomials associated with operational matrices to get the approximate solutions for solving two-dimensional elliptic partial differential equations (E-PDEs) with mixed boundary conditions. The orthogonal polynomials are based on the Standard polynomial (
In this work an experimental simulation is made to predict the performance of steady-state natural heat convection along heated finned vertical base plate to ambient air with different inclination angles and configurations of fin array. Two types of fin arrays namely vertical fins array and V-fins array on heated vertical base plate are used with different heights and spaces. The influence of inclination angle of the plate , configuration of fins array and fin geometrical parameters such as fin height and fin spacing on the temperature distribution, base convection heat transfer coefficient and average Nusselt number have been plotted and discussed. The experimental data are correlated to a formula between average Nusselt number versus R
... Show MoreFree vibration behavior was developed under the ratio of critical buckling temperature of laminated composite thin plates with the general elastic boundary condition. The equations of motion were found based on classical laminated plate theory (CLPT) while the solution functions consists of trigonometric function and a continuous function that is added to guarantee the sufficient smoother of the so-named remaining displacement function at the boundaries, in this research, a modified Fourier series were used, a generalized procedure solution was developed using Ritz method combined with the imaginary spring technique. The influences of many design parameters such as angles of layers, aspect ratio, thickness ratio, and ratio of initial in-
... Show MoreCantilever beams are used in many crucial applications in machinery and construction. For example, the airplane wing, the microscopic probe for atomic force measurement, the tower crane overhang and twin overhang folding bridge are typical examples of cantilever beams. The current research aims to develop an analytical solution for the free vibration problem of cantilever beams. The dynamic response of AISI 304 beam represented by the natural frequencies was determined under different working surrounding temperatures ((-100 ℃ to 400 ℃)). A Matlab code was developed to achieve the analytical solution results, considering the effect of some beam geometrical dimensions. The developed analytical solution has been verified successful
... Show MoreThe current research illustrates experimentally the effect of series and parallel connection (Z-I Configurations) of flat plate water solar collectors array on the thermal performance of closed loop solar heating system. The study includes the effect of changing the water flow rate on the thermal efficiency. The results show that, the collector's efficiency in series connection is higher than the parallel connection within flow rate level less than (100) ℓ/hr. Moreover, the collector efficiency in parallel connection of (I-Configurations) is more than the (Z- Configurations) with increasing the water flow rate .The maximum daily efficiency for parallel (I-Configurations) and (Z- Configurations) are (55%) and (51%) at w
... Show MoreIn the present work a dynamic analysis technique have been developed to investigate and characterize the quantity of elastic module degradation of cracked cantilever plates due to presence of a defect such as surface of internal crack under free vibration. A new generalized technique represents the first step in developing a health monitoring system, the effects of such defects on the modal frequencies has been the main key quantifying the elasticity modulii due to presence any type of un-visible defect. In this paper the finite element method has been used to determine the free vibration characteristics for cracked cantilever plate (internal flaws), this present work achieved by different position of crack. Stiffness re
... Show More