High-power density supercapacitors and high-energy–density batteries have gotten a lot of interest since they are critical for the power supply of future electric cars, portable electronic gadgets, unmanned aircraft, and so on. The electrode materials used in supercapacitors and batteries have a significant impact on the practical energy and power density. Metal–organic frameworks (MOFs) have the outstanding electrochemical ability because of their ultrahigh porous structure, ease of functionalization, and great specific surface area. These features make it an intriguing electrode material with good electrochemical efficiency for high-storage batteries. Thus, this review summarizes current developments in MOFs-based materials as an electrode for electric vehicle battery applications. We introduce several kinds of batteries and discuss their advantages and disadvantages. Also, current developments in MOFs composite, the use of MOF-derived materials as electrode materials in electric car batteries, and MOFs architectures and their features were highlighted. Lastly, the future of MOF-related materials for electric vehicle batteries was discussed and provide some guidance on where this field is headed.
The current study was designed to remove Lead, Copper and Zinc from industrial wastewater using Lettuce leaves (Lactuca sativa) within three forms (fresh, dried and powdered) under some environmental factors such as pH, temperature and contact time. Current data show that Lettuce leaves are capable of removing Lead, Copper and Zinc ions at significant capacity. Furthermore, the powder of Lettuce leaves had highest capability in removing all metal ions. The highest capacity was for Lead then Copper and finally Zinc. However, some examined factors were found to have significant impacts upon bioremoval capacity of studied ions, where best biosorption capacity was found at pH 4, at temperature 50º C and contact time of 1 hour.
Our research aimed to find a new material that can be an efficient heavy metal free flame retardant for plasticized poly(vinyl chloride) comparable to the conventional flame retardants. One of these extraordinary materials is Oxydtron using as an admixture for concrete. Oxydtron showed unexpected efficiency as a flame retardant agent and an excellent heat stabilizer as well. Limiting oxygen index (LOI), static heat stability, Congo-red, and differential scanning calorimetry (DSC) were carried out. The thermal tests proved that Oxydtron is suitable to improve plasticized poly(vinyl chloride) performance at high temperatures applications in terms of flame retarding and thermal stability
The snthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes of azo ligand 4-[(5-acetyl-2-aminophenyl)- diazenyl]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one derived from 4-aminoantipyrine and 4-aminoacetophenone are reported. The nature of the compounds have been studied followed by mole ratio and methods of continuous contrast, Beer′s law followed during a condensation rate (1 × 10-4 – 3 × 10-4 M). The analytical data showed that all the complexes are in 1:2 metal-ligand ratio. An octahedral geometry have been suggested for all the compounds and biological studies of all the complexes were evaluated against different types of antimicrobial strains.
Complexes of (Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+) with the ligand Ethyl cyano (2-methyl carboxylate phenyl azo acetate) (ECA) have been prepared and characterized by FTIR, (UV-Visible), Atomic absorption spectroscopy, Molar conductivity measurements and magnetic moments measurements. The following general formula has been suggested for the prepared complexes [M(ECA)2]Cl2 where M = (Co2+, Ni2+, Cu2+ ,Zn2+, Cd2+, Hg2+) and the geometry is octahedral.
Some transition metal ions (Cr +3, Co+2 , Ni+2,Cu+2, Zn+2,Ag + ,Cd+2 ) complexes of [(N, N- - Bis(2- hydroxy ethyl) Glycine] (Bicine) have been synthesized and characterized by FTIR ,UV-Visble spectroscopy, atomic absorption, magnetic susceptibility, conductivity measurements and study of the nature of the complexes formed in ethanolic solution following the moleratio method. From the results obtained the following general formola have been given for the prepared complexes [M m+ (Bicine)n]. XH2O
New metal complexes of some transition metal ions Co(II), Cu(II) , Cd(II) and Zn(II) were prepared by their reaction with previously prepared ligands HLI= (P-methyl anilino) phenyl acetonitrile and HLII = (P-methyl anilino) –P– chloro phenyl acetonitrile . The two ligands were prepared by Strecker’s procedure which includ the reaction of p- toluidine with benzaldehyde and P- chlorobenzaldehyde respectively. Structures were proposed depending on atomic absorption , i.r. and u.v.visible spectra in addition to magnetic susceptibility and electrical conductivity measurements.
New complexes of the [M(Ura)(Phen)(OH2)Cl2]Cl.2H2O type, where (Ura) uracil ; (Phen) 1,10-phenanthroline hydrate; M (Cr+3 , Fe+3 and La+3) were synthesized from mix ligand and characterized . These complexes have been characterized by the elemental micro analysis, spectral (FT-IR., UV-Vis, 1HNMR, 13CNMR and Mass) and magnetic susceptibility as well the molar conductive mensuration. Cr+3, Fe+3 and La+3- complexes of six–coordinated were proposed for the insulated for three metal(III) complexes for molecular formulas following into uracil property and 1,10-phenanthroline hydrate present . The proposed molecular structure for all metal (III) complexes is octahedral geometries .The biological activity was tested of metal(III) salts, liga
... Show More