High-power density supercapacitors and high-energy–density batteries have gotten a lot of interest since they are critical for the power supply of future electric cars, portable electronic gadgets, unmanned aircraft, and so on. The electrode materials used in supercapacitors and batteries have a significant impact on the practical energy and power density. Metal–organic frameworks (MOFs) have the outstanding electrochemical ability because of their ultrahigh porous structure, ease of functionalization, and great specific surface area. These features make it an intriguing electrode material with good electrochemical efficiency for high-storage batteries. Thus, this review summarizes current developments in MOFs-based materials as an electrode for electric vehicle battery applications. We introduce several kinds of batteries and discuss their advantages and disadvantages. Also, current developments in MOFs composite, the use of MOF-derived materials as electrode materials in electric car batteries, and MOFs architectures and their features were highlighted. Lastly, the future of MOF-related materials for electric vehicle batteries was discussed and provide some guidance on where this field is headed.
The complexes of the 2-hydroxy-4-Nitro phenyl piperonalidene with metal ions Cr(III), Ni(II), Pt(IV) and Zn(II) were prepared in ethanolic solution. These complexes were characterized by spectroscopic methods, conductivity, metal analyses and magnetic moment measurements. The nature of the complexes formed in ethanolic solution was study following the molar ratio method. From the spectral studies, monomer structures proposed for the nickel (II) and Zinc (II) complexes while dimeric structures for the chromium (III) and platinum (IV) were proposed. Octahedral geometry was suggested for all prepared complexes except zinc (II) has tetrahedral geometry, Structural geometries of these compounds were also suggested in gas phase by using
... Show MoreThe compound [L] was produced in the current study through the reaction of 4-aminoacetophenon with 4-methoxyaniline in the cold, concentrated HCl with 10% NaNO2. Curcumin, several transition metal complexes (Ni (II), La (III), and Hg (II)), and compound [L] were combined in EtOH to create new complexes. UV-vis spectroscopy, FTIR, AA, TGA-DSC, conductivity, chloride content, and elemental analysis (CHNS) were used to describe the structure of produced complexes. Biological activities against fungi, S. aureus (G+), Pseudomonas (G-), E. coli (G-), and Proteus (G-) were demonstrated using complexes. Depending on the outcomes of the aforementioned methods, octahedral formulas were given as the geometrical structures for each created comp
... Show MoreLimitations of the conventional diagnostic techniques urged researchers to seek novel methods to predict, diagnose, and monitor periodontal disease. Use of the biomarkers available in oral fluids could be a revolutionary surrogate for the manual probing/diagnostic radiograph. Several salivary biomarkers have the potential to accurately discriminate periodontal health and disease. This study aimed to determine the diagnostic sensitivity and specificity of salivary interleukin (IL)‐17, receptor activator of nuclear factor‐κB ligand (RANKL), osteoprotegerin (OPG), RANKL/OPG for differentiating (1) periodontal health from disease and (2) stable a
5-((2,4-dibromo-6-((cyclohexyl(methyl)amino)methyl)phenyl)diazenyl)quinolin-8-ol azo ligand (L) has been synthesized through the reaction of diazonium salt for 2,4-dibromo-6-((cyclohexyl(methyl)amino)methyl)aniline with 8-hydroxyquinoline. The azo ligand (L) was characterized utilizing spectroscopic techniques, including FTIR, UV-Vis, 1H and 13C NMR, as well as mass spectrometry and micro-elemental analysis (C.H.N). Metal complexes containing Co(II), Ni(II), Cu(II), and Zn(II) were synthesized and analyzed through mass spectrometry, flame atomic absorption, elemental analysis (C.H.N), infrared and UV-Vis spectroscopy, along with measurements of conductivity and magnetic properties. The experimental findings suggested that all met
... Show MoreFour complexes of Co(II),Ni(II),Cu(II) and Zn(II) with the azo ligand (4-chloro-N-(2-(dimethylamino)ethyl)-5-((2-hydroxy-4,6-dimethylphenol)diazenyl)-2-methoxybenzamide) L. The structure of ligand and complexes were confirmed on the basis of their analytical and spectral data, these dyes were tested as dyeing in cotton fabric, and also testing in light and cleaner firmness. Also, antimicrobial and antifungal activities of ligand and their complexes were evaluated and the results showed that the ZnL compound showed the higher antibacterial activity with inhibition zone of 13mm against Staphyloco-ccus epidermidis, Steptococcus sp. and Escherichia coli compared with ligand and other metal complexes .In case of ZnL compound the antifungal activ
... Show More. New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic m
... Show MoreFour complexes of Co(II),Ni(II),Cu(II) and Zn(II) with the azo ligand (4-chloro-N-(2-(dimethylamino)ethyl)-5-((2-hydroxy- 4,6-dimethylphenol)diazenyl)-2-methoxybenzamide) L. The structure of ligand and complexes were confirmed on the basis of their analytical and spectral data, these dyes were tested as dyeing in cotton fabric, and also testing in light and cleaner firmness. Also, antimicrobial and antifungal activities of ligand and their complexes were evaluated and the results showed that the ZnL compound showed the higher antibacterial activity with inhibition zone of 13mm against Staphyloco-ccus epidermidis, Steptococcus sp. and Escherichia coli compared with ligand and other metal complexes .In case of ZnL compound the antifungal acti
... Show MoreThe nuclear charge density distributions, form factors andcorresponding proton, charge, neutron, and matter root mean squareradii for stable 4He, 12C, and 16O nuclei have been calculated usingsingle-particle radial wave functions of Woods-Saxon potential andharmonic-oscillator potential for comparison. The calculations for theground charge density distributions using the Woods-Saxon potentialshow good agreement with experimental data for 4He nucleus whilethe results for 12C and 16O nuclei are better in harmonic-oscillatorpotential. The calculated elastic charge form factors in Woods-Saxonpotential are better than the results of harmonic-oscillator potential.Finally, the calculated root mean square radii usingWoods-Saxonpotentials ho
... Show MoreThe Co (II), Ni (II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II) complexes of mixed of amino acid (L-Alanine ) and Trimethoprim antibiotic were synthesized. The complexes were characterized using melting point, conductivity measurement and determination the percentage of the metal in the complexes by flame (AAS). Magnetic susceptibility, Spectroscopic Method [FT-IR and UV-Vis]. The general formula have been given for the prepared mixed ligand complexes [M(Ala)2(TMP)(H2O)] where L- alanine (abbreviated as (Ala ) = (C5H9NO2) deprotonated primary ligand, L- Alanine ion .= (C5H8NO2-) Trimethoprim (abbreviated as (TMP ) = C10H11N3O3S M(II) = Co (II),Ni(II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II). The results showed that the deprotonated L- Alanine b
... Show More