Fingerprint recognition is one among oldest procedures of identification. An important step in automatic fingerprint matching is to mechanically and dependably extract features. The quality of the input fingerprint image has a major impact on the performance of a feature extraction algorithm. The target of this paper is to present a fingerprint recognition technique that utilizes local features for fingerprint representation and matching. The adopted local features have determined: (i) the energy of Haar wavelet subbands, (ii) the normalized of Haar wavelet subbands. Experiments have been made on three completely different sets of features which are used when partitioning the fingerprint into overlapped blocks. Experiments are conducted on FVC2004 databases that have a four database; every database is eighty fingers and eight impressions per finger. The implemented recognition results of the proposed system show high recognition performance which is 100%.
The flexible joint robot manipulators provide various benefits, but also present many control challenges such as nonlinearities, strong coupling, vibration, etc. This paper proposes optimal second order integral sliding mode control (OSOISMC) for a single link flexible joint manipulator to achieve robust and smooth performance. Firstly, the integral sliding mode control is designed, which consists of a linear quadratic regulator (LQR) as a nominal control, and switching control. This control guarantees the system robustness for the entire process. Then, a nonsingularterminal sliding surface is added to give a second order integral sliding mode control (SOISMC), which reduces chartering effect and gives the finite time convergence as well. S
... Show MoreThis paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.
Blockchain represents a new promising technology with a huge economic impact resulting from its uses in various fields such as digital currency and banking; malware represents a serious threat to users, and there are many differences in the effectiveness of antivirus software used to deal with the problem of malware. This chapter has developed a coefficient for measuring the effectiveness of antivirus software. This chapter evaluates the effectiveness of antivirus software by conducting tests on a group of protection programs using a folder containing an amount of data. These programs are applied to combat viruses contained in this folder. The study revealed that the effectiveness of antivirus software is as follows: AVG scored 0%,
... Show MoreThe effect of some environment faetor (different temperature and relative humidity) on the biology of the old world- screw worm, were studied under laboratory condition, the result showed that non of the eggs hatched at 15°c and under dried eondition which relative humidity between 20-40%, also result showed that the mature larvae needs one days to become pupa since it leaves the larval died at the temperature ranged between 25-40°C at different humidity rates. While it needs 3 days under lower temperature and different humidity to become pu^, on the other hand the results showed that either low temperature and dried condition or high temperature at different humidity rates cause non of pupa became adult. While low temperature (15-20) °c
... Show MoreThe aim of this study is to look at the potential of a local sustainable energy network in a pre-existing context to develop a novel design beneficial to the environment. Nowadays, the concept of smart cities is still in the developmental phase/stage andwe are currently residing in a transitional period, therefore it is very important to discover new solutions that show direct benefits the people may get from transforming their city from a traditional to a smart city. Using experience and knowledge of successful projects in various European and non-European smart cities, this study attempts to demonstrate the practical potential of gradually moving existing cities to t
... Show MoreThe energy expectation values for Li and Li-like ions ( , and ) have been calculated and examined within the ground state and the excited state in position space. The partitioning technique of Hartree-Fock (H-F) has been used for existing wave functions.
Collective C2 transitions in 32S are discussed for higher
energy configurations by comparing the calculations of transition
strength B(CJ )with the experimental data. These configurations
are taken into account through a microscopic theory including
excitations from the core orbits and the model space orbits with nħω
excitations.
Excitations up to n=10 are considered. However n=6 seems to
be large enough for a sufficient convergence. The calculations
include the lowest seven 2+0 states of 32S.
The purpose of the present work is to calculate the expectation value of potential energy for different spin states (??? ? ???,??? ? ???) and compared it with spin states (??? , ??? ) for lithium excited state (1s2s3s) and Li- like ions (Be+,B+2) using Hartree-Fock wave function by partitioning techanique .The result of inter particle expectation value shows linear behaviour with atomic number and for each atom and ion the shows the trend ??? < ??? < ??? < ???
One of the most important techniques for preparing nanoparticle material is Pulsed Laser Ablation in Liquid technique (PLAL). Carbon nanoparticles were prepared using PLAL, and the carbon target was immersed in Ultrapure water (UPW) then irradiated with Q-switched Nd:YAG laser (1064 nm) and six ns pulse duration. In this process, an Nd:YAG laser beam was focused near the carbon surface. Nanoparticles synthesized using laser irradiation were studied by observing the effects of varying incident laser pulse intensities (250, 500, 750, 1000) mJ on the particle size (20.52, 36.97, 48.72, and 61.53) nm, respectively. In addition, nanoparticles were characterized by means of the Atomic Force Microscopy (AFM) test, pH easurement
... Show More