A new simple and sensitive spectrophotometric method for the determination of trace amount of Co(II) in the ethanol absolute solution have been developed. The method is based on the reaction of Co(II) with ethyl cyano(2-methyl carboxylate phenyl azo acetate) (ECA) in acid medium of hydrochloric acid (0.1 M) givining maximum absorbance at ((λmax = 656 nm). Beer's law is obeyed over the concentration range (5-60) (μg / ml) with molar absorptivity of (1.5263 × 103 L mol-1 cm-1) and correlation coefficient (0.9995). The precision (RSD% ˂ 1%). The stoichiometry of complex was confirmed by Job's method which indicated the ratio of metal to reagent is (2:1). The studied effect of interference elements Zn(II), Cu(II), Na(I), K(I), Ca(II) and Mg(II) on the complexation of Co(II) and have been studied and applied to determine Co(II) in synthetic water samples.
A procedure for the mutual derivatization and determination of thymol and Dapsone was developed and validated in this study. Dapsone was used as the derivatizing agent for the determination of thymol, and thymol was used as the derivatizing agent for the determination of Dapsone. An optimization study was performed for the derivatization reaction; i.e., the diazonium coupling reaction. Linear regression calibration plots for thymol and Dapsone in the direct reaction were constructed at 460 nm, within the concentration range of 0.3-7 μg ml-1 for thymol and 0.3-4 μg ml-1 for Dapsone, with limits of detection 0.086 and 0.053 μg ml-1, respectively. Corresponding plots for the cloud point extraction of thymol and Dapsone were constructed
... Show MoreA simple and sensitive spectrophotometric method is described for the determination of diclofenac sodium (DCL), in pure form and pharmaceutical formulations. The method is based on the oxidation of 2,4-dinitrophenylhydrazine (2,4-DNPH) and coupling of the oxidized product with DCL in alkaline medium to give intensively colored chromogen which exhibits maximum absorption (λmax) at 600 nm, and the concentration of DCL was determined spectrophotometrically. The optimum reaction conditions and other analytical parameters were evaluated. In addition to classical univariate optimization, modified simplex method (MSM) has been applied in optimization of the variables affecting the color producing reaction. Beer’s law is obeyed in the
... Show MoreA rapid high sensitive and inexpensive economic method has been developed for the Determination of phenoxazine by using molecular spectrophotometry. The method is based on the oxidation of phenoxazine by potassium (meta)periodate in acidic medium. The oxidation conditions were selected to enhance the sensitivity and the stability of the pink colored species which shows an absorption maximum at 530 nm. The Beer’s law was obeyed for phenoxazine concentration range from 1 to 6 µg mL-1 with 0.003 µg mL-1 detection limit and provided variation coefficients between 0.4 to 1.7 %. This method was successfully applied for the determination of phenoxazine in aqueous samples
A rapid, simple and sensitive spectrophotometric method for the determination of trace amounts of chromium (VI) was studied. The method is based on the reaction of chromium (VI) with promethazine forming a red colored species by chromium in hydrochloric acid medium and exhibits a maximum absorbance at 518 nm. A plot of absorbance with chromium (VI) gives a straight line indicating that Beer’s law has been obeyed over the range concentration of 0.05-4.0 µg/ml with a molar absorptivity of chromium(VI) 2.04  104 l.mol-1.cm-1 , Sandell’s sensitivity index of 0.0025 µg.cm-2 while the limit of detection (LOD) was found to be 0.0924 µg.ml
... Show MoreNew, simple and sensitive batch and reverse FIA spectrophotometric methods for the determination of doxycycline hyclate in pure form and in pharmaceutical preparations were proposed. These methods based on oxidative coupling reaction between doxycycline hyclate and 3-methylbenzothiazolinone-2-hydrazone hydrochloride (MBTH) in the presence ammonium ceric sulfate in acidic medium, to form green water-soluble dye that is stable and has a maximum absorbance at 626 nm. A calibration graph shows that a Beer's law is obeyed over the concentration range of 1-80 and 0.5-110 ?g.mL-1 of DCH for the batch and rFIA respectively with detection limit of 0.325 ?g.mL-1 of DCH for r-FIA methods. All different chemicals and physical experimental paramete
... Show MoreAmiodarone hydrochloride (AH) has been determined spectrophotometrically Using methyl orange (MO). In our previous researches MO was used for determination of Mexiletine Hydrochloride [1]. The method based on complexation between MO and AH. After shaking and diluting the complex solution with D.W, the pH was adjusted with NaOH and HCl to pH 3. The colored complex formed between AH and the reagent were transferred into separating funnels and extracted using 5.5ml CH2Cl2 and were shaken for (5 minutes). The extracted organic layer was used for preparation of the calibration curves for spectrophotometric measurements of AH at 434nm. The blanks were carried out in exactly the same way throughout the whole procedure.&n
... Show MoreA new spectrophotometric method for the determination of allopurinol drug was investigated. The proposed method was based on the reaction of the intended drug with catechol and Fe(II) to form a blue soluble complex which was measured at λmax 580 nm. A graph of absorbance versus concentration shown that Beer’s law was obeyed over the concentration range of 2–10 μg ml–1 with molar absorptivity of 9.4 x 103 l mol–1 cm–1 and Sandell sensitivity of 1.4 x 10–2 μg cm–2. A recovery percentage of 100% with RSD of 1.0%–1.3% was obtained. The proposed method was applied successfully for the determination of allopurinol drug in tablets with a good accuracy and
This paper describes the development of a simple spectrophotometric determination of bismuth III with 4-(2-pyridylazo) resorcinol (PAR) in aqueous solution in the presence of cetypyridinium chloride surfactant at pH 5 which exhibits maximum absorption at 532 nm. Beer's law is obeyed over the range 5-200 µg/25 mL. i.e. 0.2-8 ppm with a molar absorptivity of 3×104 l.mol-1.cm-1 and Sandell's sensitivity index of 0.0069 µg.cm-2. The method has been applied successfully in the determination of Bi (III) in waters and veterinary preparation.