Meta stable phase of SnO as stoichiometric compound is deposited utilizing thermal evaporation technique under high vacuum onto glass and p-type silicon. These films are subjected to thermal treatment under oxygen for different temperatures (150,350 and 550 °C ). The Sn metal transformed to SnO at 350 oC, which was clearly seen via XRD measurements, SnO was transformed to a nonstoichiometric phase at 550 oC. AFM was used to obtain topography of the deposited films. The grains are combined compactly to form ridges and clusters along the surface of the SnO and Sn3O3 films. Films were transparent in the visible area and the values of the optical band gap for (150,350 and 550 °C ) 3.1, 2.7and 2.4 eV respectively. AFM shows that the granular size of all films increases by increasing the oxidation temperature. The PL emission results were matched the results of the optical energy gap. The solar parameters for the three phases are studied to obtain the efficiency, which were found to be 2%, 3.7%,5.1
Well dispersed Cu2FeSnSe4 (CFTSe) nanofilms were synthesized by hot-injection method. The structural and morphological measurements were characterized using XRD (X-ray diffraction), Raman spectroscopy, SEM (scanning electron microscopy), and TEM (transmission electron microscopy). Chemical composition and optical properties of as-synthesized CFTSe nanoparticles were characterized using EDS (energy dispersive spectroscopy) and UV-Vis spectrophotometry. The average particle size of the nanoparticles was about 7-10 nm. The UV-Vis absorption spectra showed that the synthesized CFTS nanofilms have a band gap (Eg) of about 1.16 eV. Photo-electrochemical characteristics of CFTSe nanoparticles were studied and indicated their potential application
... Show Morediasotiation compondnds sulphate upon with melting elemental aryl been used in his mouth for a while of studied
Research has included preparation of three of n Vthal acids Amec Bmentoj high of interaction vehicles Ortometta and bar aminophenol with phthalic anhydride was withdrawn water and ring closure of acids Alvthal AMEC prepared
This article reviews the construction of organic solar cell (OSC) and characterized their optical and electrical properties, where indium tin oxide (ITO) used as a transparent electrode, “Poly (3-hexylthiophene- 2,5-diyl) P3HT / Poly (9,9-dioctylfluorene-alt-benzothiadiazole) F8BT” as an active layer and “Poly(3,4-ethylenedioxythiophene)-poly (styrene sulfonate)” PEDOT: PSS which is referred to the hole transport layer. Spin coating technique was used to prepared polymers thin film layers under ambient atmosphere to make OSC. The prepared samples were characterized after annealing process at (80 ͦ C) for (30 min) under non-isolated circumference. The results show a value of filling factor (FF) of (2.888), (0.233) and (0.28
... Show MoreStructural, optical, and electrical properties of thin films of CdS : Zn prepared by the solution – growth technique are reported as a function of zinc concentration. CdS are window layers influencing the photovoltaic response of CIS solar cells. The zinc doping concentration was varied from 0.05 to 0.5 wt %, zinc doping apparently increase the band gap and lowers the resistivity. All beneficial optical properties of chemically deposited CdS thin films for application as window material in heterojunction optoelectronic devices are retained. Heat treatment in air at 400 °C for 1h modify crystalline structure, optical, and electrical properties of solution growth deposited CdS : Zn films.
Copper Zinc Sulphide (Cu0.5Zn0.5S) alloy and thin films were fabricated in a vacuum. Nano crystallized (CZS) film with thick 450±20 nm was deposit at substrates glasses using thermal evaporation technique below ~ 2 × 10− 5 mbar vacuum to investigated the films structural, morphological and optical properties depended on annealing temperatures ( as-deposited, 423, 523 and 623) K for one hour. The influences annealed temperature on structurally besides morphologically characteristics on these films were investigated using XRD and AFM respectively. XRD confirms the formation a mixed hexagonal phase of CuS-ZnS in (102) direction with polycrystalline in nature having very fine crystallites size varying from (5.5-13.09) nm. AFM analys
... Show MoreWell-dispersed Cu2FeSnSe4 (CFTSe) nanoparticles were first synthesized using the hot-injection method. The structure and phase purity of as-synthesized CFTSe nanoparticles were examined by X-ray diffraction (XRD) and Raman spectroscopy. Their morphological properties were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average particle sizes of the nanoparticles were about 7-10 nm. The band gap of the as-synthesized CFTS nanoparticles was determined to be about 1.15 eV by ultraviolet-visible (UV-Vis) spectrophotometry. Photoelectrochemical characteristics of CFTSe nanoparticles were also studied, which indicated their potential application in solar energy water splitting.
In this study, SnS thin films were deposited onto glass substrate by thermal evaporation technique at 300K temperature. The SnS films have been prepared with different thicknesses (100,200 &300) nm. The crystallographic analysis, film thickness, electrical conductivity, carrier concentration, and carrier mobility were characterized. Measurements showed that depending on film thickness. The D.C. conductivity increased with increase in film thickness from 3.720x10-5 (Ω.cm)-1 for 100 nm thickness to 9.442x10-4 (Ω.cm)-1 for 300 nm thicknesses, and the behavior of activation energies, hall mobility, and carrier concentration were also studied.