Communication of the human brain with the surroundings became reality by using Brain- Computer Interface (BCI) based mechanism. Electroencephalography (EEG) being the non-invasive method has become popular for interaction with the brain. Traditionally, the devices were used for clinical applications to detect various brain diseases but with the advancement in technologies, companies like Emotiv, NeuoSky are coming up with low cost, easily portable EEG based consumer graded devices that can be used in various application domains like gaming, education etc as these devices are comfortable to wear also. This paper reviews the fields where the EEG has shown its impact and the way it has proved useful for individuals with severe motor disorder, rehabilitation and has become a means of communication to the real world. This paper investigates the use of Cubic SVM algorithm In the EEG classification. EEG feature extraction is Implemented by maximum overlap discrete wavelet transform (MODWT) to reduce the dimensionality of data. The Sliding Window Technique is used to calculate the mean within each window samples. The feature vectors are loaded into the support vector machine (SVM) and optimize tree.
In this paper, wavelets were used to study the multivariate fractional Brownian motion through the deviations of the random process to find an efficient estimation of Hurst exponent. The results of simulations experiments were shown that the performance of the proposed estimator was efficient. The estimation process was made by taking advantage of the detail coefficients stationarity from the wavelet transform, as the variance of this coefficient showed the power-low behavior. We use two wavelet filters (Haar and db5) to manage minimizing the mean square error of the model.
The Field Programmable Gate Array (FPGA) approach is the most recent category, which takes the place in the implementation of most of the Digital Signal Processing (DSP) applications. It had proved the capability to handle such problems and supports all the necessary needs like scalability, speed, size, cost, and efficiency.
In this paper a new proposed circuit design is implemented for the evaluation of the coefficients of the two-dimensional Wavelet Transform (WT) and Wavelet Packet Transform (WPT) using FPGA is provided.
In this implementation the evaluations of the WT & WPT coefficients are depending upon filter tree decomposition using the 2-D discrete convolution algorithm. This implementation w
... Show MoreFG Mohammed, HM Al-Dabbas, Science International, 2018 - Cited by 2
Future wireless systems aim to provide higher transmission data rates, improved spectral efficiency and greater capacity. In this paper a spectral efficient two dimensional (2-D) parallel code division multiple access (CDMA) system is proposed for generating and transmitting (2-D CDMA) symbols through 2-D Inter-Symbol Interference (ISI) channel to increase the transmission speed. The 3D-Hadamard matrix is used to generate the 2-D spreading codes required to spread the two-dimensional data for each user row wise and column wise. The quadrature amplitude modulation (QAM) is used as a data mapping technique due to the increased spectral efficiency offered. The new structure simulated using MATLAB and a comparison of performance for ser
... Show MoreThe use of Cosine transform to analyze the model-noise pattern alteration with different vibration model applied on multimode fiber optics are studied. It's results compared with the Fourier transform to perform the same analysis using total frequency difference and the computation time, which almost coincide for the both transforms. A discussion for the results and recommendation are introduced.
In this paper, visible image watermarking algorithm based on biorthogonal wavelet
transform is proposed. The watermark (logo) of type binary image can be embedded in the
host gray image by using coefficients bands of the transformed host image by biorthogonal
transform domain. The logo image can be embedded in the top-left corner or spread over the
whole host image. A scaling value (α) in the frequency domain is introduced to control the
perception of the watermarked image. Experimental results show that this watermark
algorithm gives visible logo with and no losses in the recovery process of the original image,
the calculated PSNR values support that. Good robustness against attempt to remove the
watermark was s
Embedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations.
This paper introduces method of image enhancement using the combination of both wavelet and Multiwavelet transformation. New technique is proposed for image enhancement using one smoothing filter.
A critically- Sampled Scheme of preprocessing method is used for computing the Multiwavelet.It is the 2nd norm approximation used to speed the procedures needed for such computation.
An improvement was achieved with the proposed method in comparison with the conventional method.
The performance of this technique has been done by computer using Visual Baisec.6 package.