Preferred Language
Articles
/
cRY-6okBVTCNdQwCZ47U
Key rate estimation of measurement-device-independent quantum key distribution protocol in satellite-earth and intersatellite links
...Show More Authors

In this work, an estimation of the key rate of measurement-device-independent quantum key distribution (MDI-QKD) protocol in free space was performed. The examined free space links included satellite-earth downlink, uplink and intersatellite link. Various attenuation effects were considered such as diffraction, atmosphere, turbulence and the efficiency of the detection system. Two cases were tested: asymptotic case with infinite number of decoy states and one-decoy state case. The estimated key rate showed the possibility of applying MDI-QKD in earth-satellite and intersatellite links, offering longer single link distance to be covered.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jun 15 2025
Journal Name
Iraqi Journal Of Laser
Performance Enhancement of Metasurface Grating Polarizer Using Deep Learning for Quantum Key Distribution Systems
...Show More Authors

Metasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Text Multilevel Encryption Using New Key Exchange Protocol
...Show More Authors

The technological development in the field of information and communication has been accompanied by the emergence of security challenges related to the transmission of information. Encryption is a good solution. An encryption process is one of the traditional methods to protect the plain text, by converting it into inarticulate form. Encryption implemented can be occurred by using some substitute techniques, shifting techniques, or mathematical operations. This paper proposed a method with two branches to encrypt text. The first branch is a new mathematical model to create and exchange keys, the proposed key exchange method is the development of Diffie-Hellman. It is a new mathematical operations model to exchange keys based on prime num

... Show More
View Publication Preview PDF
Scopus (6)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2011
Journal Name
International Journal Of Research And Reviews In Computer Science
Detection of the photon number splitting attack by using decoy states quantum key distribution system
...Show More Authors

The goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.

Publication Date
Mon Feb 10 2025
Journal Name
Journal Of Optics
Implementing quantum key distribution based on coincidence detection captured from two different single photon detection modules
...Show More Authors

Quantum key distribution (QKD) provides unconditional security in theory. However, practical QKD systems face challenges in maximizing the secure key rate and extending transmission distances. In this paper, we introduce a comparative study of the BB84 protocol using coincidence detection with two different quantum channels: a free space and underwater quantum channels. A simulated seawater was used as an example for underwater quantum channel. Different single photon detection modules were used on Bob’s side to capture the coincidence counts. Results showed that increasing the mean photon number generally leads to a higher rate of coincidence detection and therefore higher possibility of increasing the secure key rate. The secure key rat

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Tue Mar 12 2024
Journal Name
Semiconductor Physics, Quantum Electronics And Optoelectronics
Numerical study of single-layer and interlayer grating polarizers based on metasurface structures for quantum key distribution systems
...Show More Authors

Polarization is an important property of light, which refers to the direction of electric field oscillations. Polarization modulation plays an essential role for polarization encoding quantum key distribution (QKD). Polarization is used to encode photons in the QKD systems. In this work, visible-range polarizers with optimal dimensions based on resonance grating waveguides have been numerically designed and investigated using the COMSOL Multiphysics Software. Two structures have been designed, namely a singlelayer metasurface grating (SLMG) polarizer and an interlayer metasurface grating (ILMG) polarizer. Both structures have demonstrated high extinction ratios, ~1.8·103 and 8.68·104 , and the bandwidths equal to 45 and 55 nm for th

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Thu Dec 15 2011
Journal Name
Iraqi Journal Of Laser
Generation of Truly Random QPSK Signal Waveforms for Quantum Key Distribution Systems Based on Phase Coding
...Show More Authors

In this work a model of a source generating truly random quadrature phase shift keying (QPSK) signal constellation required for quantum key distribution (QKD) system based on BB84 protocol using phase coding is implemented by using the software package OPTISYSTEM9. The randomness of the sequence generated is achieved by building an optical setup based on a weak laser source, beam splitters and single-photon avalanche photodiodes operating in Geiger mode. The random string obtained from the optical setup is used to generate the quadrature phase shift keying signal constellation required for phase coding in quantum key distribution system based on BB84 protocol with a bit rate of 2GHz/s.

View Publication Preview PDF
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Laser
Generation of True Random TTL Signals for Quantum Key-Distribution Systems Based on True Random Binary Sequences
...Show More Authors

A true random TTL pulse generator was implemented and investigated for quantum key distribution systems. The random TTL signals are generated by low cost components available in the local markets. The TTL signals are obtained by using true random binary sequences based on registering photon arrival time difference registered in coincidence windows between two single – photon detectors. The true random TTL pulse generator performance was tested by using time to digital converters which gives accurate readings for photon arrival time. The proposed true random pulse TTL generator can be used in any quantum -key distribution system for random operation of the transmitters for these systems

View Publication Preview PDF
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Random Number Generation for Quantum Key Distribution Systems Based on Shot-Noise Fluctuations in a P-I-N Photodiode
...Show More Authors

A simple setup of random number generator is proposed. The random number generation is based on the shot-noise fluctuations in a p-i-n photodiode. These fluctuations that are defined as shot noise are based on a stationary random process whose statistical properties reflect Poisson statistics associated with photon streams. It has its origin in the quantum nature of light and it is related to vacuum fluctuations. Two photodiodes were used and their shot noise fluctuations were subtracted. The difference was applied to a comparator to obtain the random sequence.

View Publication Preview PDF
Publication Date
Wed Jun 10 2009
Journal Name
Iraqi Journal Of Laser
Real Time Quantum Bit Error Rate Performance Test for a Quantum Cryptography System Based on BB84 protocol
...Show More Authors

In this work, the performance of the receiver in a quantum cryptography system based on BB84 protocol is scaled by calculating the Quantum Bit Error Rate (QBER) of the receiver. To apply this performance test, an optical setup was arranged and a circuit was designed and implemented to calculate the QBER. This electronic circuit is used to calculate the number of counts per second generated by the avalanche photodiodes set in the receiver. The calculated counts per second are used to calculate the QBER for the receiver that gives an indication for the performance of the receiver. Minimum QBER, 6%, was obtained with avalanche photodiode excess voltage equals to 2V and laser diode power of 3.16 nW at avalanche photodiode temperature of -10

... Show More
View Publication Preview PDF
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Estimation of Survival and Hazard Rate Functions of Exponential Rayleigh Distribution
...Show More Authors

In this paper, we used the maximum likelihood estimation method to find the estimation values ​​for survival and hazard rate functions of the Exponential Rayleigh distribution based on a sample of the real data for lung cancer and stomach cancer obtained from the Iraqi Ministry of Health and Environment, Department of Medical City, Tumor Teaching Hospital, depending on patients' diagnosis records and number of days the patient remains in the hospital until his death.

View Publication Preview PDF
Crossref (1)
Crossref