An acidic environment causes surface changes of resin composites. Filler particlesize and filler distribution also have a direct effect on these surface changes. This invitro study evaluated the influence of Pepsi Cola drink on the surface roughness ofComposan LCM and Composan Ceram over time. Sixteen disc shaped specimens(10mm diameter, 2mm thickness) of each resin composite were fabricated, therebyforming two groups (n= 8). Surface roughness (Ra) was analyzed after 24 hrs beforeexposure to beverage. The specimens were submitted to a five minutes immersion inPepsi Cola three times daily interrupted by immersion in deionized distilled water (37C˚). Surface roughness measurements were done at 10, 30, and 60 days intervals. Datawere submitted to paired t-test. There was a statistically highly significant (p <0.001)increase in surface roughness values of the tested composites after 30 days and 60days immersion in Cola drink. Composan LCM exhibited a significantly (p <0.05)higher surface roughness values than Composan Ceram.The surface roughness of the composite materials are significantly affected byexposure to acidic drink over time, highly filled micro hybrid composites with smallfiller particle size are significantly more resistant to acid erosion.
Abstract: Aluminum alloys grade 6061-T6 are characterized by their excellent properties and processing characteristics which make them ideal for varieties of industrial applications under cyclic loading, aluminum alloys show less fatigue life than steel alloys of similar strength. In the current study, a nanosecond fiber laser of maximum pulse energy up to 9.9 mJ was used to apply laser shock peening process (LSP) on aluminum thin sheets to introduce residual stresses in order to enhance fatigue life under cyclic loading Box-Behnken design (BBD) based on the design of experiments (DOE) was employed in this study for experimental design data analysis, model building and optimization The effect of working parameters spot size (ω), scannin
... Show MoreFive novel nickel, iron, cobalt, copper, and mercury complexes were synthesized from tetraazamacrocyclic Schiff base ligand (L), which were derived from 3-(4-(dimethyl amino) benzylidene) pentane-2,4-dione and 1,2- diaminocyclohexane in a 2:2 molar ratio. Many physico-chemical and spectroscopic techniques, including melting point, 1HNMR, 13CNMR, elemental analysis, molar conductance, magnetic susceptibility, UV-Vis, FT-IR, and thermogravimetric analysis (TGA), were used to characterize the Schiff base ligand and all metal complexes. The octahedral geometry of all the complexes [MLCl2] is confirmed by spectroscopic analyses. All substances' biological properties, such as their in vitro antioxidant activity or level of free radical scavenging
... Show MoreComplexes of some metal ions ( Mn(I? ) , Co(??) , Ni(??) ,Cu (??) , Zn(I?) , Cd (??) , and Hg(??) ) with 8-hydroxyquinoline (Oxine) and 2- Picoline (2-pic ) have been synthesized and characterized on the basis of their FT-IR. and Uv-visible spectroscopy ,atomic absorption molar conductivity measurements and magnetic susceptibility ,from the results obtained the following general formula has been given for prepared complexes [M (oxine)2 (2-pic)2]where M = M(??) = Mn , Co , Ni , Cu , Zn , Cd , Hg(oxine)- = ionic ligand 8-hydroxyquinolin (oxinato)(2- pic) = 2- picoline
A new ligand [N-(4-methoxy benzoyl amino)-thioxo methyl ] leucine (MBL) was prepared from the reaction of (4-methoxy benzoyl isothiocyanate with leucine acid in molar ratio (l:l), it was characterized by elemental analysis (C.H.N.S), FT-IR, UV-Vis, 1H and 13C-NMR. The complexes of the bivalent ions (Mn, Fe, Co, Ni, Cu, Zn, Cd and Hg ) have been prepared and characterized too. The structural was established by elemental analysis (C.H.N.S), FT-IR, UV-Vis spectra, conductivity measurements atomic absorption and magnetic susceptibility and determination of molar ration (M:L). The complexes showed characteristic behavior of tetrahedral geometry around the metal ions except with (Cu) complex showed square planer.
A series of lanthanide metal (???) complexes have been prepared from the new azo ligand, 3-(1-methyl-2-benzimidazolylazo)-Tyrosine (MBT). The structural feature were confirmed on the basis of their elemental analysis, metal content, molar conductance, magnetic measurement, FTIR, 1 HNMR and UV-Vis spectra studies. The isolated complexes were found to have a mole ratio (1:2) (metal:ligand) stoichiometry with the general formula [Ln(MBT)2]Cl (Ln(???) = La, Ce, Pr, Nd, Sm, Eu and Gd). The chelates were found to have octahedral structures. The FTIR spectra shows that the ligand (MBT) is coordinated to lanthanide ions as a N, N, O-tridentate anion via benzimidazole nitrogen, azo nitrogen and oxygen of hydroxyl after deprotonation. Com
... Show MoreThere is currently a pressing need to create an electro-analytical approach capable of detecting and monitoring genosensors in a highly sensitive, specific, and selective way. In this work, Functionalized Multiwall Carbon Nanotubes, Graphene, Polypyrrole, and gold nanoparticles nanocomposite (f-MWCNTs-GR-PPy-AuNP) were effectively deposited on the surface of the ITO electrode using a drop-casting process to modify it. The structural, morphological, and optical analysis of the modified ITO electrodes was carried out at room temperature using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) images, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectra. Cyclic voltammetry (CV) and electrochemi
... Show More