In this work, a comparative analysis for the behavior and pattern of the variations of the IF2 and T Ionospheric indices was conducted for the minimum and maximum years of solar cycles 23 and 24. Also, the correlative relationship between the two ionospheric indices was examined for the seasonal periods spanning from August 1996 to November 2008 for solar cycle 23 and from December 2008 to November 2019 for solar cycle 24. Statistical calculations were performed to compare predicted values with observed values for the selected indices during the tested timeframes. The study's findings revealed that the behavior of the examined indices exhibited almost similar variations throughout the studied timeframe. The seasonal variations were adopted to examine the cross-correlation between the studied indices. The seasonal correlation between tested indices demonstrated that the two indices are highly correlated to each other, with determination coefficient (R2) values ranging from 0.991 to 0.998 during solar cycle 23 and from 0.996 to 0.998 during solar cycle 24. Furthermore, the results of the comparative analytical study revealed that the mathematical correlation equation between the tested indices could be described as a first-order polynomial equation. The proposed mathematical correlation formula for these two indices exhibited a high level of accuracy and good fit between observed values and generated datasets for all seasons during both solar cycles 23 and 24.
In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreA specific, sensitive and simple method was used for the determination of: vitamin B9 (Folic acid) in pure and pharmaceutical formulations using continuous flow injection analysis. The method is based on formation of ion pair compound between folic acid and ammonium molybdate in an aqueous medium to obtain a gray precipitate complex, using homemade; Ayah-6SX1-ST-2D solar cell CFI Analyzer. Optimum parameters was studied to increase the sensitivity for developed method. The linear range for the calibration graph was 0.01-0.6 mMol.L-1 of vitamin B9 and LOD was 131.994 ng/sample with correlation coefficient ( r ) of 0.9810, RSD% was lower than 0.1%, (n=9) for the determination of vitamin B9 at concentration (0.07and 0.5) mMol.L-1 respectiv
... Show MoreThis study presents the debonding propagation in single NiTi wire shape memory alloy into linear low-density polyethylene matrix composite the study of using the pull-out test. The aim of this study is to investigate the pull-out tests to check the interfacial strength of the polymer composite in two cases, with activation NiTinol wire and without activation. In this study, shape memory alloy NiTinol wire 2 mm diameter and linear fully annealed straight shape were used. The study involved experimental and finite element analysis and eventually comparison between them. This pull-out test is considered a substantial test because its results have a relation with behavior of smart composite materials. The pull-out test was carried out by a u
... Show MoreThis paper represent the second step i n a molecular clon i ng program ai ming to clone large DNA fi·agmen ts of the sal t tolerant bermudagrass (Cyrwdon dactylon L.) DNA usi ng the bacteriophage (EM13L3) as a vector.
In th is work, a yield of about I 00 g bacteriophage DNA per one liter culture.was obtained with.a purity ranging between (1.7-1.8). The vector JJNA v.as completely double digested with the restriction enzymes llamHI and EcoRI, followed by pu
... Show MoreA new, simple and sensitive method was used forevaluation of propranolol withphosphotungstic acidto prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on reaction between propranolol and phosphotungstic acid in an aqueous medium to obtain a yellow precipitate. Optimum parameters was studied to increase the sensitivity for developed method. A linear range for calibration graph was 0.007-13 mmol/L for cell A and 5-15 mmol/L for cell B, and LOD 207.4792 ng/160 µL and 1.2449 µg/160 µL respectively to cell A and cell B with correlation coefficient (r) 0.9988 for cell A, 0.9996 for cell B, RSD% was lower than 1%, (n=8) for the
... Show MoreThe aim of the research is to study the comparison between (ARIMA) Auto Regressive Integrated Moving Average and(ANNs) Artificial Neural Networks models and to select the best one for prediction the monthly relative humidity values depending upon the standard errors between estimated and observe values . It has been noted that both can be used for estimation and the best on among is (ANNs) as the values (MAE,RMSE, R2) is )0.036816,0.0466,0.91) respectively for the best formula for model (ARIMA) (6,0,2)(6,0,1) whereas the values of estimates relative to model (ANNs) for the best formula (5,5,1) is (0.0109, 0.0139 ,0.991) respectively. so that model (ANNs) is superior than (ARIMA) in a such evaluation.
ABSTRUCT
In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error ( λ ) in the model (SPSEM), estimated the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo
... Show MoreSpatial data analysis is performed in order to remove the skewness, a measure of the asymmetry of the probablitiy distribution. It also improve the normality, a key concept of statistics from the concept of normal distribution “bell shape”, of the properties like improving the normality porosity, permeability and saturation which can be are visualized by using histograms. Three steps of spatial analysis are involved here; exploratory data analysis, variogram analysis and finally distributing the properties by using geostatistical algorithms for the properties. Mishrif Formation (unit MB1) in Nasiriya Oil Field was chosen to analyze and model the data for the first eight wells. The field is an anticline structure with northwest- south
... Show MoreThe kindergarten teacher play a role in fixing the children behavior so she must plant the value and the habits that make a positive behavior and accepted by the society so the teacher must know all the right educational psychological styles to fix the children behavior and make them accepted psychologically and socially so the problem of the research start from knowing the relation between the methods of dealing with the kindergarten’s teachers and the non right behavior appearance for the kindergarten children. The current research aims to measure the negative behavior appearance of the children of kindergarten and distinguish it according to (sex and levels) and to distinguish the most using styles by the teachers of kinderg
... Show More