As we live in the era of the fourth technological revolution, it has become necessary to use artificial intelligence to generate electric power through sustainable solar energy, especially in Iraq and what it has gone through in terms of crises and what it suffers from a severe shortage of electric power because of the wars and calamities it went through. During that period of time, its impact is still evident in all aspects of daily life experienced by Iraqis because of the remnants of wars, siege, terrorism, wrong policies ruling before and later, regional interventions and their consequences, such as the destruction of electric power stations and the population increase, which must be followed by an increase in electric power stations, if the summer season witnesses it. The Iraqis have a major interruption of electrical power, which forces them to buy electricity from the owners of private generators, and they are subject to their implementation and exploitation. Prices per ampere, as the price of an ampere in hot summer reaches $20, according to their desires, in addition to the environmental pollution left by those generators, as they are usually in residential neighborhoods and near homes, which increases From pollution of fresh air and the environment in residential neighborhoods, and this is what necessitated the aim of this study to find realistic solutions that are in line with the current situation that wounded Iraq is living, as it possesses enormous natural resources, and praise be to God, Lord of the Worlds. Despite all this, Iraq provides energy to most countries, and it suffers from severe power outages. Our study aims to find other alternatives to obtain renewable energy. By building more solar panels and wind turbines to play a decisive role in achieving this goal, which is to provide clean energy, especially since the climate of the Middle East in general and Iraq in particular has solar energy available throughout the year, especially in the hot summer season, and by using artificial intelligence it may be possible to store that energy and save it when needed.
In this study water quality index (WQI) was calculated to classify the flowing water in the Tigris River in Baghdad city. GIS was used to develop colored water quality maps indicating the classification of the river for drinking water purposes. Water quality parameters including: Turbidity, pH, Alkalinity, Total hardness, Calcium, Magnesium, Iron, Chloride, Sulfate, Nitrite, Nitrate, Ammonia, Orthophosphate and Total dissolved solids were used for WQI determination. These parameters were recorded at the intakes of the WTPs in Baghdad for the period 2004 to 2011. The results from the annual average WQI analysis classified the Tigris River very poor to polluted at the north of Baghdad (Alkarkh WTP) while it was very poor to very polluted in t
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreThe research aims to determine the mix of production optimization in the case of several conflicting objectives to be achieved at the same time, therefore, discussions dealt with the concept of programming goals and entrances to be resolved and dealt with the general formula for the programming model the goals and finally determine the mix of production optimization using a programming model targets to the default case.
To obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which shows the reliability and applicability of the proposed approach.
The city of Samawah is one of the most important cities which emerged in the poverty area within the poverty map produced by the Ministry of Planning, despite being an important provincial centre. Although it has great development potentials, it was neglected for more than 50 years,. This dereliction has caused a series of negative accumulations at the urban levels (environmental, social and economic). Therefore, the basic idea of this research is to detect part of these challenges that are preventing growth and development of the city. The methodology of the research is to extrapolate the reality with the analysis of the results, data and environmental impact assessment of the projec
Nowadays, Wheeled Mobile Robots (WMRs) have found many applications as industry, transportation, inspection, and other fields. Therefore, the trajectory tracking control of the nonholonomic wheeled mobile robots have an important problem. This work focus on the application of model-based on Fractional Order PIaDb (FOPID) controller for trajectory tracking problem. The control algorithm based on the errors in postures of mobile robot which feed to FOPID controller to generate correction signals that transport to torque for each driven wheel, and by means of dynamics model of mobile robot these torques used to compute the linear and angular speed to reach the desired pose. In this work a dynamics model of
... Show MoreFace recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
Improving students’ use of argumentation is front and center in the increasing emphasis on scientific practice in K-12 Science and STEM programs. We explore the construct validity of scenario-based assessments of claim-evidence-reasoning (CER) and the structure of the CER construct with respect to a learning progression framework. We also seek to understand how middle school students progress. Establishing the purpose of an argument is a competency that a majority of middle school students meet, whereas quantitative reasoning is the most difficult, and the Rasch model indicates that the competencies form a unidimensional hierarchy of skills. We also find no evidence of differential item functioning between different scenarios, suggesting
... Show More