As we live in the era of the fourth technological revolution, it has become necessary to use artificial intelligence to generate electric power through sustainable solar energy, especially in Iraq and what it has gone through in terms of crises and what it suffers from a severe shortage of electric power because of the wars and calamities it went through. During that period of time, its impact is still evident in all aspects of daily life experienced by Iraqis because of the remnants of wars, siege, terrorism, wrong policies ruling before and later, regional interventions and their consequences, such as the destruction of electric power stations and the population increase, which must be followed by an increase in electric power stations, if the summer season witnesses it. The Iraqis have a major interruption of electrical power, which forces them to buy electricity from the owners of private generators, and they are subject to their implementation and exploitation. Prices per ampere, as the price of an ampere in hot summer reaches $20, according to their desires, in addition to the environmental pollution left by those generators, as they are usually in residential neighborhoods and near homes, which increases From pollution of fresh air and the environment in residential neighborhoods, and this is what necessitated the aim of this study to find realistic solutions that are in line with the current situation that wounded Iraq is living, as it possesses enormous natural resources, and praise be to God, Lord of the Worlds. Despite all this, Iraq provides energy to most countries, and it suffers from severe power outages. Our study aims to find other alternatives to obtain renewable energy. By building more solar panels and wind turbines to play a decisive role in achieving this goal, which is to provide clean energy, especially since the climate of the Middle East in general and Iraq in particular has solar energy available throughout the year, especially in the hot summer season, and by using artificial intelligence it may be possible to store that energy and save it when needed.
The computer vision branch of the artificial intelligence field is concerned with developing algorithms for analyzing video image content. Extracting edge information, which is the essential process in most pictorial pattern recognition problems. A new method of edge detection technique has been introduces in this research, for detecting boundaries.
Selection of typical lossy techniques for encoding edge video images are also discussed in this research. The concentration is devoted to discuss the Block-Truncation coding technique and Discrete Cosine Transform (DCT) coding technique. In order to reduce the volume of pictorial data which one may need to store or transmit,
... Show MoreVoice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto
... Show MoreImage retrieval is used in searching for images from images database. In this paper, content – based image retrieval (CBIR) using four feature extraction techniques has been achieved. The four techniques are colored histogram features technique, properties features technique, gray level co- occurrence matrix (GLCM) statistical features technique and hybrid technique. The features are extracted from the data base images and query (test) images in order to find the similarity measure. The similarity-based matching is very important in CBIR, so, three types of similarity measure are used, normalized Mahalanobis distance, Euclidean distance and Manhattan distance. A comparison between them has been implemented. From the results, it is conclud
... Show MoreElectrocardiogram (ECG) is an important physiological signal for cardiac disease diagnosis. With the increasing use of modern electrocardiogram monitoring devices that generate vast amount of data requiring huge storage capacity. In order to decrease storage costs or make ECG signals suitable and ready for transmission through common communication channels, the ECG data
volume must be reduced. So an effective data compression method is required. This paper presents an efficient technique for the compression of ECG signals. In this technique, different transforms have been used to compress the ECG signals. At first, a 1-D ECG data was segmented and aligned to a 2-D data array, then 2-D mixed transform was implemented to compress the
Drag reduction (DR) techniques are used to improve the flow by spare the flow energy. The applications of DR are conduits in oil pipelines, oil well operations and flood water disposal, many techniques for drag reduction are used. One of these techniques is microbubbles. In this work, reduce of drag percent occurs by using a small bubbles of air pumped in the fluid transported. Gasoil is used as liquid transporting in the pipelines and air pumped as microbubbles. This study shows that the maximum value of drag reduction is 25.11%.
In this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.
The Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from
... Show MorePavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels wit
... Show MoreThe study was conducted to estimate the economic losses caused by insect mole cricket Gryllotalpa gryllotalpa on some agricultural crops and Potato tubers in collage of Agriculture- Abu Ghraib season 2012-2013. Study showed Mole cricket caused percentage of infestation in spring potato tubers variety Luciana reached to 11.61% and the percentage of loss in weight of tubers reached 18.88%. The study showed that addition of animal manure (organic fertilizer) to the soil when planting potatoes in the autumn increased the incidence of infestation and the number of tunnels caused by mole cricket which led to from increased economic losses. When matured potato tubers were left for a longer period in the soil percentage of infestation by mole cr
... Show MoreThe aim of this study was to increasing natural carotenoides production by a locally isolate Rodotorula mucilagenosa M. by determination of the optimal conditions for growth and production of this agents, for encouragest to use it in food application permute artificial pigments which harmfull for consumer health and envieronmental. The optimal condition of carotenoides production from Rhodotorula mucilaginosa M were studied. The results shows the best carbon and nitrogen source were glucose and yeast extract. The carotenoids a mount production was 47430 microgram ̸ litter and 47460 microgram ̸ litter, respectively, and the optimum temperature was 30°C, PH 6, that the carotenoides a mount was 47470 microgram ̸ litter and 47670 microgr
... Show More