Heat is one of the most energy forms emitted to atmosphere by industrial processes. Water is considered to be the best material to reduce heat energy since its available in nature in abundance and has the ability to absorb heat efficiently. Cooling towers are ideal alternatives to re-cool hot water instead of throwing it especially in places that lack natural water resources or when there are environmental precautions because water with high temperature would be harmful to the ecosystem when it recycled to natural resources such as rivers and lakes. Also, cooling towers considered economically feasible when using west water. This paper interests with hydraulic characteristics of a counter flow wet cooling tower which was investigated experimentally. The tower filled with splash packing with Zig-Zag pattern. Current study used treated waste water and focused fundamentally on the influence of air and water flow rates on hydraulic features of cooling tower for different access water temperatures. The dependency between pressure drop and the air and water flux was spotted. In this study, it found that within a certain ranges the pressure drop increases by 75% due to liquid flux and 70% due to air flux while pressure drop is not affected by changing temperature at all. Two empirical correlation had been founded for dry pressure drop (with R2=99.5%), and for wet pressure drop (with R2=98.13%).
A Mobile Ad hoc Network (MANET) is a collection of mobile nodes, that forms on the fly a temporary wireless multi-hop network in a self-organizing way, without relying on any established infrastructure. In MANET, a pair of nodes exchange messages either over a direct wireless link, or over a sequence of wireless links including one or more intermediate nodes. For this purpose, an efficient routing protocol is required. This paper introduced performance study of three of MANET protocols (AODV, GRP and OSPFv3). This study was one of the newer studies because wireless communication played an important role in today’s application and the field of mobile ad hoc network becomes very popular for the researchers in the last years. This study w
... Show MoreThe ferric oxide nanoparticles (Fe2O3) which are deposited at interface which is related to hole collecting buffer layer [poly(3,4-ethyl-enedioxythiophene): poly(styrene-sulfonate) (PEDOT: PSS)] as well as regioregular poly(3-hexyl-thiophene): Zinc oxide nanoparticles (P3HT): (ZnO) active layer have been considerable increasing the performance of solar cell. Also, the solar cell devices have been fabricated with a weight ratio of 1:0.7, 1:0.8, 1:0.9 and 1:1 of P3HT and ZnO, respectively. In addition, photo physical characteristics regarding such devices with different value of the weight ratio were examined. This work is indicating that the absorption spectrum related to blend will be broad
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreThis paper proposes a novel finite-time generalized proportional integral observer (FTGPIO) based a sliding mode control (SMC) scheme for the tracking control problem of high order uncertain systems subject to fast time-varying disturbances. For this purpose, the construction of the controller consists of two consecutive steps. First, the novel FTGPIO is designed to observe unmeasurable plant dynamics states and disturbance with its higher time derivatives in finite time rather than infinite time as in the standard GPIO. In the FTGPO estimator, the finite time convergence rate of estimations is well achieved, whereas the convergence rate of estimations by classical GPIO is asymptotic and slow. Secondly, on the basis of the finite and fast e
... Show MoreExperimental tests were conducted to study the behavior of skirted foundations rested on dry medium sandy soil subjected to vertical and inclined loads. To achieve this goal, a small-scale physical model was designed and performed which contained an aluminum circular footing (100 mm) in diameter and (10 mm) in thickness and skirts with different heights, local medium poorly graded dry sand is placed in a steel soil container (2 mm) thick with internal dimensions (1000 mm x 1000 mm in cross section and 800 mm in height). The main objective of this study was to evaluate the response of skirt attached to the foundation at different skirt (L/D) ratios (0.0, 0.5, 1.0 and 1.5) and is subjected to point load at different angles of inclinat
... Show MoreThis research dealt with the process of reducing costs through some strategic methods of management accounting targeted cost analysis unassembled and Alkeisen, where he focused this research through his theory on a review of some administrative accounting strategic technologies, while the second practical side through the application of targeted cost analysis unassembled and Alkeisen, acquired Search importance of focusing on the decisions to cut costs, through the use of some administrative accounting strategic methods and this we can unassembled analysis, continuous improvement, and the cost of quality) when applied quality, "in light of this has been reached to a set of conclusions that the most important of the company's relian
... Show MoreThe choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators.
... Show MoreA mathematical model has been formulated to predict the influence of high outdoor air temperature on the performance of small scale air - conditioning system using R22 and alternative refrigerants R290, R407C, R410A. All refrigerants were investigated in the cooling mode operation. The mathematical model results have been validated with experimental data extracted from split type air conditioner of 2 TR capacity. This entailed the construction of an experimental test rig which consists of four main parts. They are, the refrigeration system, psychrometric test facility, measuring instrumentation, and auxiliary systems. The conditioned air was maintained at 25 0C dry bulb and 19 0C wet bulb for all tests. The outdoor ambient air temperatur
... Show MoreThe choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators. To mo
... Show More