Preferred Language
Articles
/
cBcIFo8BVTCNdQwChFt0
Efficient Modifications of the Adomian Decomposition Method for Thirteenth Order Ordinary Differential Equations
...Show More Authors

This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.

View Publication
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Nonlinear Second Order Delay Eigenvalue Problems by Least Square Method
...Show More Authors

     The aim of this paper is to study the nonlinear delay second order eigenvalue problems which consists of delay ordinary differential equations, in fact one of the expansion methods that is called the least square method which will be developed to solve this kind of problems.

View Publication Preview PDF
Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weighted Residual Method for the System of Nonlinear Volterra Integral Equations of the Second Kind Using an Exponential Function
...Show More Authors

The numerical resolve nonlinear system of Volterra integral equation of the second kind (NLSVIEK2) has been considered. The exponential function is used as the base function of the collocation method to approximate the resolve of the problem. Arithmetic epitome are performed which have already been solved by weighted residual manner,  Taylor manner and block- by- block(2, 3, 5).

View Publication Preview PDF
Crossref
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Continuous Classical Boundary Optimal Control Vector Governing by Triple Linear Partial Differential Equations of Parabolic Type
...Show More Authors

In this paper, the continuous classical boundary optimal control problem (CCBOCP) for triple linear partial differential equations of parabolic type (TLPDEPAR) with initial and boundary conditions (ICs & BCs) is studied. The Galerkin method (GM) is used to prove the existence and uniqueness theorem of the state vector solution (SVS) for given continuous classical boundary control vector (CCBCV). The proof of the existence theorem of a continuous classical boundary optimal control vector (CCBOCV) associated with the TLPDEPAR is proved. The derivation of the Fréchet derivative (FrD) for the cost function (CoF) is obtained. At the end, the theorem of the necessary conditions for optimality (NCsThOP) of this problem is stated and prov

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 22 2023
Journal Name
Iraqi Journal Of Science
Asymptotic Stability of Index 2 and 3 Hesenberg Differential Algebraic Equations
...Show More Authors

This paper aims to study the asymptotic stability of the equilibrium points of the index 2 and index 3 Hesenberg differential algebraic equations. The problem reformulated to an equivalent explicit differential algebraic equations system, so the asymptotic stability is easily investigated. The singular points such as impasse points and singularity induced bifurcation points are identified in this kind of differential algebraic equations by using conclusion of the explicit differential algebraic equations.

View Publication Preview PDF
Publication Date
Sun Jul 02 2023
Journal Name
Iraqi Journal Of Science
Asymptotic Stability of Index 2 and 3 Hesenberg Differential Algebraic Equations
...Show More Authors

This paper aims to study the asymptotic stability of the equilibrium points of the index 2 and index 3 Hesenberg differential algebraic equations. The problem reformulated to an equivalent explicit differential algebraic equations system, so the asymptotic stability is easily investigated. The singular points such as impasse points and singularity induced bifurcation points are identified in this kind of differential algebraic equations by using conclusion of the explicit differential algebraic equations.

View Publication Preview PDF
Publication Date
Sun Oct 22 2023
Journal Name
Iraqi Journal Of Science
Asymptotic Stability of Index 2 and 3 Hesenberg Differential Algebraic Equations
...Show More Authors

This paper aims to study the asymptotic stability of the equilibrium points of the index 2 and index 3 Hesenberg differential algebraic equations. The problem reformulated to an equivalent explicit differential algebraic equations system, so the asymptotic stability is easily investigated. The singular points such as impasse points and singularity induced bifurcation points are identified in this kind of differential algebraic equations by using conclusion of the explicit differential algebraic equations.

View Publication Preview PDF
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
Recent modification of Homotopy perturbation method for solving system of third order PDEs
...Show More Authors

This paper presents new modification of HPM to solve system of 3 rd order PDEs with initial condition, for finding suitable accurate solutions in a wider domain.

Scopus (18)
Scopus
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
The Continuous Classical Boundary Optimal Control of Triple Nonlinear Elliptic Partial Differential Equations with State Constraints
...Show More Authors

    Our aim in this work is to study the classical continuous boundary control vector  problem for triple nonlinear partial differential equations of elliptic type involving a Neumann boundary control. At first, we prove that the triple nonlinear partial differential equations of elliptic type with a given classical continuous boundary control vector have a unique "state" solution vector,  by using the Minty-Browder Theorem. In addition, we prove the existence of a classical continuous boundary optimal control vector ruled by the triple nonlinear partial differential equations of elliptic type with equality and inequality constraints. We study the existence of the unique solution for the triple adjoint equations

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
Oscillation and Asymptotic Behavior of Second Order Half Linear Neutral Dynamic Equations
...Show More Authors

     The oscillation property of the second order half linear dynamic equation was studied, some sufficient conditions were obtained to ensure the oscillation of all solutions of the equation. The results are supported by illustrative examples.

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method
...Show More Authors

This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient

View Publication Preview PDF
Scopus (1)
Scopus Crossref