This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.
Watermarking operation can be defined as a process of embedding special wanted and reversible information in important secure files to protect the ownership or information of the wanted cover file based on the proposed singular value decomposition (SVD) watermark. The proposed method for digital watermark has very huge domain for constructing final number and this mean protecting watermark from conflict. The cover file is the important image need to be protected. A hidden watermark is a unique number extracted from the cover file by performing proposed related and successive operations, starting by dividing the original image into four various parts with unequal size. Each part of these four treated as a separate matrix and applying SVD
... Show MoreThe current research aims at detecting Brain Dominance Learning Styles distinguished
and ordinary secondary school students (males and females).The researcher adopted Torrance
measure, known as ‘the style of your learning and thinking to measure Brain Dominance
Learning Styles’, the codified version of Joseph Qitami (1986); picture (a). The researcher
verified the standard properties of tool. The final application sample was 352 distinguished
and ordinary students; 176 distinguished male and female students and 176 ordinary male and
female students at the scientific fifth level of secondary school from schools in the province of
Baghdad, AL- KarKh Education Directorates in the First and Second . and who have been
Since the beginning of mankind, the view of the sky was present through observations with the naked eye, then it developed with time, and the sciences and tools of astronomical observations developed, including photometric measurements, which reached a high degree of accuracy in describing various cosmic phenomena, including the study of galaxies, their composition, and the differences between them, and from here the importance of this study emerged, to determine the differences between two distinct types of classification of galaxies, which are normal and barred spiral galaxies, where two galaxies NGC 4662 and NGC 2649 were chosen that represented certain types of galaxies to study the morphological structure of the two galaxies, a
... Show MoreDue to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl
In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.
In this article, the solvability of some proposal types of the multi-fractional integro-partial differential system has been discussed in details by using the concept of abstract Cauchy problem and certain semigroup operators and some necessary and sufficient conditions.
For many problems in Physics and Computational Fluid Dynamics (CFD), providing an accurate approximation of derivatives is a challenging task. This paper presents a class of high order numerical schemes for approximating the first derivative. These approximations are derived based on solving a special system of equations with some unknown coefficients. The construction method provides numerous types of schemes with different orders of accuracy. The accuracy of each scheme is analyzed by using Fourier analysis, which illustrates the dispersion and dissipation of the scheme. The polynomial technique is used to verify the order of accuracy of the proposed schemes by obtaining the error terms. Dispersion and dissipation errors are calculated
... Show MoreSome specific factors that cause the kinetic compensation effect
during the decomposition CaC03 are identified. The role of the C02 equilibrium pressure is examined in relation to the kinetic compensation effect. This investigation also shows why non - iso thermal experiments have some time necessarily to yield value of activation energy different from the value obtained from isothermal experiments.