Recent years have witnessed an increase in the use of composite coatings for numerous applications, including aerospace, aircraft, and maritime vessels. These materials owe this popularity surge to the superior strength, weight, stiffness, and electrical insulation they exhibit over conventional substances, such as metals. The growing demand for such materials is accompanied by the inevitable need for fast, accurate, and affordable nondestructive testing techniques to reveal any possible defects within the coatings or any defects under coating. However, typical nondestructive testing (NDT) techniques such as ultrasonic testing (UT), infrared thermography (IRT), eddy current testing (ECT), and laser shearography (LS) have failed to provide successful results when inspecting composite coatings. Consequently, microwave NDT techniques have emerged to compensate for the shortcomings of traditional NDT approaches. Numerous microwave NDT methods have been reported for composite coatings inspection. Although existing microwave NDT methods have shown successful inspection of composite coatings, they often face several challenges, such as low spatial image quality and extensive data interpretation. Nevertheless, many of these limitations can be addressed by utilizing microwave NDT techniques with modern technologies such as soft computing. Artificially intelligent techniques have greatly enhanced the reliability and accuracy of microwave NDT techniques. This paper reviews various traditional NDT techniques and their limitations in inspecting composite coatings. In addition, the article includes a detailed review of several microwave NDT techniques and their benefits in evaluating composite coatings. The paper also highlights the advantages of using the recently reported microwave NDT approaches employing artificial intelligence approaches. This review demonstrates that microwave NDT techniques in conjunction with artificial intelligence approaches have excellent prospects for further enhancing composite coatings inspection and assessment efficiency. The review aimed to provide the reader with a comprehensive overview of most NDT techniques used for composite materials alongside their most salient features.
The energy requirements of corn silage harvesters and the application of precision agricultural techniques are essential for efficient and productive agricultural practices. The article aims to review previous studies on the energy requirements needed for different corn silage harvesting machines, and on the other hand, to present methods for measuring corn silage productivity directly in the field and monitoring it based on microcontrollers and artificial intelligence techniques. The process of making corn silage is done by cutting green fodder plants into small pieces, so special harvesters are used for this, called corn silage harvesters. The purpose of harvesting corn silage is to efficiently collect and store as many digestible nutrien
... Show MoreWe present a case of congenital of flexor pollicis longus agenesis without thenar hypoplasia in a 12-year-old girl with no history of trauma. Two-staged corrective surgery was planned. In the first stage, the flexor pulley was reconstructed using silicone followed by the second stage 3 months later when flexor pollicis longus reconstruction was performed using tendon transfer of the flexor digitorum superficialis. The patient completed post-operative physiotherapy and the result of the surgical treatment in both functional and cosmetic aspects was, in the authors’ opinion, excellent.
Polymeric hollow fiber membrane is produced by a physical process called wet or dry/wet phase inversion; a technique includes many steps and depends on different factors (starting from selecting materials, end with post-treatment of hollow fiber membrane locally manufactured). This review highlights the most significant factors that affect and control the characterization and structure of ultrafiltration hollow fiber membranes used in different applications.
Three different types of polymers (polysulfone PSF, polyethersulfone PES or polyvinyl chloride PVC) were considered to study morphology change and structure of hollow fiber membranes in this review. These hollow fiber membranes were manufactured with different pro
... Show MoreThe preparation of activated carbon (AC) from date stones by using microwave assisted K2CO3 activation was investigated in this paper. The influence of radiation time, radiation power, and impregnation ratio on the yield and methylene blue (MB) uptake of such carbon were studied. Based on Box-Wilson central composite design, two second order polynomial models were developed to correlate the process variables to the two responses. From the analysis of variance the significant variables on each response were identified. Optimum coditions of 8 min radiation time, 660 W radiation power and 1.5 g/g impregnation ratio gave 460.123 mg/g MB uptake and 19.99 % yield. The characteristics of the AC were examined by pore structure analysis, and scan
... Show MoreMany conservative sphincter-preserving procedures had been described to be effective in
healing of anal fistula without excision or de roofing.
Objective: To verify the outcome of mere photocoagulation of the fistula tract on healing of low anal
fistula.
Materials and Methods: Using 810nm diode laser, the tracts of low anal fistulae in a cohorts of six male
patients (mean age of 32 yr) had been photocoagulated by retrograde application of laser light through an
orb tip optical fiber threaded in to the tract. Swabs for culture and sensitivity testing were obtained before
and after laser application. Patients were followed up regularly to announce fistula healing.
Results: Mean laser exposure time was 6.6 min., mean
Absorption properties (Attenuation coefficient, the percentage of the reflection, and the percentage of absorption) in x-band have been investigated in this paper for novolac – alumina- graphite mixture. Using novolac as the host material, the samples are prepared with alumina concentrations (5%,10%,15%,20%) and graphite concentrations (5%,10%) with thickness equal to 2.2mm .Network analyzer produced by HP-8510 was used in this work to measure the attenuation coefficient. The samples (3, 5) have good attenuation of wave with bandwidth of frequencies. The maximum of attenuation is -25dB at frequency 10.28GHZ in sample (3) which has concentrations (80%novolac,10%alumina,and 5% graphite) and -24 dB at frequency 10.56GHZ in sample (5) whic
... Show MoreCerium (III), Neodymium (III) and Samarium (III) Complexes existent a wide range of implementation that stretch from their play in the medicinal and pharmaceutical area because of their major significant pharmacological characteristic such as antifungal, anti-cancer, anti-bacterial ,anti-human immunodeficiency virus ,antineoplastic, anti-inflammation,inhibition corrosion,in some industrial (polymers, Azo dye).It is likely to open avenuesto research among various disciplines such as physics, electronics, chemistry and materials science by these complexes that contain exquisitely designed organic molecules.This paper reviews the definition, importance and various applications of Cerium (III), Neodymium (III) and Samarium (III) Complexes anddi
... Show MoreDeveloping an efficient algorithm for automated Magnetic Resonance Imaging (MRI) segmentation to characterize tumor abnormalities in an accurate and reproducible manner is ever demanding. This paper presents an overview of the recent development and challenges of the energy minimizing active contour segmentation model called snake for the MRI. This model is successfully used in contour detection for object recognition, computer vision and graphics as well as biomedical image processing including X-ray, MRI and Ultrasound images. Snakes being deformable well-defined curves in the image domain can move under the influence of internal forces and external forces are subsequently derived from the image data. We underscore a critical appraisal
... Show More