Recent years have witnessed an increase in the use of composite coatings for numerous applications, including aerospace, aircraft, and maritime vessels. These materials owe this popularity surge to the superior strength, weight, stiffness, and electrical insulation they exhibit over conventional substances, such as metals. The growing demand for such materials is accompanied by the inevitable need for fast, accurate, and affordable nondestructive testing techniques to reveal any possible defects within the coatings or any defects under coating. However, typical nondestructive testing (NDT) techniques such as ultrasonic testing (UT), infrared thermography (IRT), eddy current testing (ECT), and laser shearography (LS) have failed to provide successful results when inspecting composite coatings. Consequently, microwave NDT techniques have emerged to compensate for the shortcomings of traditional NDT approaches. Numerous microwave NDT methods have been reported for composite coatings inspection. Although existing microwave NDT methods have shown successful inspection of composite coatings, they often face several challenges, such as low spatial image quality and extensive data interpretation. Nevertheless, many of these limitations can be addressed by utilizing microwave NDT techniques with modern technologies such as soft computing. Artificially intelligent techniques have greatly enhanced the reliability and accuracy of microwave NDT techniques. This paper reviews various traditional NDT techniques and their limitations in inspecting composite coatings. In addition, the article includes a detailed review of several microwave NDT techniques and their benefits in evaluating composite coatings. The paper also highlights the advantages of using the recently reported microwave NDT approaches employing artificial intelligence approaches. This review demonstrates that microwave NDT techniques in conjunction with artificial intelligence approaches have excellent prospects for further enhancing composite coatings inspection and assessment efficiency. The review aimed to provide the reader with a comprehensive overview of most NDT techniques used for composite materials alongside their most salient features.
The UN organization is considered one of the most important organizations at the international level. It has accomplished multiple tasks and roles of many different issues and events that hit the developing and advanced world countries. It has performed a series of procedures and laws that have had an impact on ending the wars and conflicts that plagued some countries and continued for a period of time in the past. Moreover, it has improved the level of the international relations between a number of countries due to the problems and incidents took place between them. It has relied on finding solutions and treatments for humanitarian problems such as the preservation of the environment, preventing the spread of epidemics and diseases Thi
... Show MoreBuckling analysis of a laminated composite thin plate with different boundary conditions subjected to in-plane uniform load are studied depending on classical laminated plate theory; analytically using (Rayleigh-Ritz method). Equation of motion of the plates was derived using the principle of virtual work and solved using modified Fourier displacement function that satisfies general edge conditions. The eigenvalue problem generated by using Ritz method, the set of linear algebraic equations can be solved using MATLAB for symmetric and anti-symmetric, cross and angle-ply laminated plate considering some design parameters such as aspect ratios, number of layers, lamination type and orthotropic ratio. The results obtained g
... Show MoreGlass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load. The in
... Show MoreAn experimental program was conducted to determine the residual of composite Steel Beams-Reinforced Concrete (SB-RC) deck floors fabricated from a rolled steel beam topped with a reinforced concrete slab, exposed to high temperatures (fire flame) of 300, 500, and 700ºC for 1 hour, and then allowed to cool down by leaving them in the lab condition to return to the ambient temperature. The burning results showed that, by exposing them to a fire flame of up to 300ºC, no serious permanent deflection occurred. It was also noticed that the specimen recovered 93% of 19.2 mm of the deflection caused by burning. The recovered deflection of burned composite SB-RC deck floor at 500ºC was 40% of 77.9 mm of the deflection caused by burning with a res
... Show MoreBackground: This clinical trial aims to evaluate the color changes of direct resin composite veneer (DCV) restorations based on spectrophotometric analysis of 4 different types of resin composites between the baseline immediately after polishing and after one year of follow-up. Materials and methods: 28 patients were assessed for eligibility for participation, aged between 18 and 38 years old, who indicated for DCV restorations in anterior maxillary teeth were considered for participation in this study. In total, 25 patients who met the inclusion criteria were selected (6 males and 19 females, mean age: 20.9 at the time of restoration placement), and 3 patients were excluded. Partic
... Show MoreTo promote sustainable steel-concrete composite structures, it is essential to develop special shear connectors that facilitate accelerated construction and deconstruction. A lockbolt demountable shear connector (LBDSC) was recently proposed. While the LBDSC has been evaluated using horizontal and vertical (standard) push-out tests, it is essential to further assess the disassembly mechanism and the positive flexural performance of prefabricated demountable composite beams (PDCBs) under both serviceability and ultimate limit states. Two full-scale test specimens of PDCBs with LBDSC were designed with partial shear connections and assessed using a three or four-point load beam setup under both cyclic and static monotonic loading conditions.
... Show More