Crude oil still affects many countries because it is one of the essential fuel sources. It makes life more manageable in modern communities and cannot be overstated because it is easy to use and find. However, the pollution caused by its use in industries such as mining, transportation, and the oil and gas business, especially soil pollution, cannot be ignored. Soil pollution is an issue in most communities because it influences people and ecology. Accidental infusions and spills of ore oils are prevalent occurrences leading to the entire or fractional exchange of the soil pore fluid by oil-contaminated soils that have affected the geotechnical engineering properties. The liquid limitations for polluted soil grades silty loam and sandy loam decreased by 38% and 16%. Oil contamination leads to decreased permeability; the permeability values for sandy loam soil decreased from (3.6 × 10−6 to 0.25 × 10−6 cm/s) when the oil content increased from 0 to 16%; however, the permeability values for silty loam decreased from (2.6 × 10−6 to 0.25 × 10−6) cm. The current study results exhibit that the geotechnical properties of contaminated soil with oil slag can be modified upon adding cement at different weight percentages (3, 5, and 7%) to the soil. The Atterberg limits and specific gravity of the soil were noticeably reduced when it was stabilised with cement, as well as because oil spills on soil significantly influence the environment. So, there is an immediate and critical need for efficiently removing petroleum hydrocarbon pollutants from contaminated soil. Bioremediation is a new technology gaining interest worldwide to clean up sites that have polluted petroleum hydrocarbons.
This research studies the effect of addition of some nanoparticles
(MgO, CuO) and grain size (30,40nm) on some physical properties
(impact strength, hardness and thermal conductivity) for a matrix
blend of epoxy resin with SBR rubber. Hand –Lay up method was
used to prepare the samples. All samples were immersed in water for
9 weeks.
The Results showed decreased in the values of impact strength and
hardness but increased the coefficient of thermal conductivity.
Background: Herbal medicine can be called one of the branches of medicine in various forms. Turmericcurcumin has proved its efficiencies a coloring, flavoring agent and has been traditionally used in medicine, exhibiting remarkable anti-inflammatory and antioxidant properties. The varied biological properties of curcumin and lack of toxicity even when administered at higher doses makes it attractive to explore its use in various disorders like diseases of skin. It is good potential agent for wound healing. Materials and methods: Sixty four new Zealand rabbits were used in this study ,they were divided into four groups,each group was subdivided as follows:Experimental groups(8 rabbits) right facial side of animals for essential oil applicati
... Show MoreThe current research aims to know the effect of Needham's constructivist model on the achievement of third-year students in the Life Sciences Department in the teaching methods subject. To achieve the research objectives, the experimental method was followed for the experimental and control groups with dimensional measurement of the achievement variable of the teaching methods subject. The research sample included (62) students in the third year of the Life Sciences Department, distributed into two equal groups in the variables (self-assessment of learning methods - chronological age in years - intelligence level - previous information). To measure the level of students' achievement, an achievement test was constructed consisting of (40) te
... Show MoreThis research foxed on the effect of fire flame of different burning temperatures (300, 400 and 500)oC on the compressive strength of reactive powder concrete (RPC).The steady state duration of the burning test was (60)min. Local consuming material were used to mixed a RPC of compressive strength around (100) MPa. The tested specimens were reinforced by (3.0) cm hooked end steel fiber of (1100) MPa yield strength. Three steel fiber volume fraction were adopted in this study (0, 1.0and 1.5)% and two cooling process were included, gradual and sudden. It was concluding that increasing burning temperature decreases the residual compressive strength for RPC specimens of(0%) steel fiber volume fraction by (12.16, 19.46&24.49) and (18.20, 27.77 &3
... Show MoreThe construction of highly safe and durable buildings that can bear accident damage risks including fire, earthquake, impact, and more, can be considered to be the most important goal in civil engineering technology. An experimental investigation was prepared to study the influence of adding various percentages 0%, 1.0%, and 1.5% of micro steel fiber volume fraction (Vf) to reactive powder concrete (RPC)—whose properties are compressive strength, splitting tensile strength, flexural strength, and absorbed energy—after the exposure to fire flame of various burning temperatures 300, 400, and 500 °C using gradual-, foam-, and sudden-cooling methods. The outcomes of this research proved that the maximum reduction in mechanical prop
... Show MoreThe semiconductor ZnO is one of II – VI compound group, it is prepare as thin films by using chemical spray pyrolysis technique; the films are deposited onto glass substrate at 450 °C by using aqueous zinc chloride as a spray solution of molar concentration 0.1 M/L. Sample of the prepared film is irradiating by Gamma ray using CS 137, other sample is annealed at 550°C. The structure of the irradiated and annealed films are analyzed with X-ray diffraction, the results show that the films are polycrystalline in nature with preferred (002) orientation. The general morphology of ZnO films are imaged by using the Atomic Force Microscope (AFM), it constructed from nanostructure with dimensions in order of 77 nm.
The optical properties o
This work studies with produce of light fuel fractions of gasoline, kerosene and gas oil from treatment of residual matter that will be obtained from the solvent extraction process as by product from refined lubricate to improve oil viscosity index in any petroleum refinery. The percentage of this byproduct is approximately 10% according to all feed (crude oil) in the petroleum refinery process. The objective of this research is to study the effect of the residence time parameter on the thermal cracking process of the byproduct feed at a constant temperature, (400 °C). The first step of this treatment is the thermal cracking of this byproduct material by a constructed batch reactor occupied with control device at a selective range of re
... Show MoreAn experiment was carried out to study the effect of soil organic carbon (SOC) and soil texture on the distance of the wetting front, cumulative water infiltration (I), infiltration rate (IR), saturated water conductivity (Ks), and water holding capacity (WHC). Three levels ( 0, 10, 20, and 30 g OC kg-1 ) from organic carbon (OC) were mixed with different soil materials sandy, loam, and clay texture soils. Field capacity (FC) and permanent wilting point (PWP) were estimated. Soil materials were placed in transparent plastic columns(12 cm soil column ), and water infiltration(I) was measured as a function of time, the distance of the wetting front and Ks. Results showed that advance we
The performance of a diesel engine was tested with diesel oil contaminated with glycol at the engineering workshop/Department of Agricultural Machines and Equipment / College of the Agricultural Engineering Sciences at the University of Baghdad. To investigate the impact of different concentrations of glycol on the performance of a diesel engine, an experimental water-cooled four-stroke motor was utilized, with oil containing 0, 100, and 200 parts per million (ppm). Specific fuel consumption, thermal efficiency, friction power, and exhaust gas temperature were examined as performance indicators. To compare the significance of the treatments, the study employed a full randomization des