Preferred Language
Articles
/
cBb0locBVTCNdQwCZFf3
Sequential Monte Carlo Localization Methods in Mobile Wireless Sensor Networks: A Review
...Show More Authors

The advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages and disadvantages. The similarities and differences of each scheme are investigated on the basis of significant parameters, namely, localization accuracy, computational cost, communication cost, and number of samples. We discuss the challenges and direction of the future research work for each parameter.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Aug 25 2012
Journal Name
Wireless Personal Communications
Multi-Objective Evolutionary Algorithm Based on Decomposition for Energy Efficient Coverage in Wireless Sensor Networks
...Show More Authors

Scopus (56)
Crossref (42)
Scopus Clarivate Crossref
Publication Date
Sun Aug 24 2014
Journal Name
Wireless Personal Communications
Multi-layer Genetic Algorithm for Maximum Disjoint Reliable Set Covers Problem in Wireless Sensor Networks
...Show More Authors

View Publication
Scopus (22)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
An Improved Cuckoo Search Algorithm for Maximizing the Coverage Range of Wireless Sensor Networks
...Show More Authors

The issue of increasing the range covered by a wireless sensor network with restricted sensors is addressed utilizing improved CS employing the PSO algorithm and opposition-based learning (ICS-PSO-OBL). At first, the iteration is carried out by updating the old solution dimension by dimension to achieve independent updating across the dimensions in the high-dimensional optimization problem. The PSO operator is then incorporated to lessen the preference random walk stage's imbalance between exploration and exploitation ability. Exceptional individuals are selected from the population using OBL to boost the chance of finding the optimal solution based on the fitness value. The ICS-PSO-OBL is used to maximize coverage in WSN by converting r

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Apr 08 2018
Journal Name
Al-khwarizmi Engineering Journal
Energy Consumption Analyzing in Single hop Transmission and Multi-hop Transmission for using Wireless Sensor Networks
...Show More Authors

Wireless sensor networks (WSNs) are emerging in various application like military, area monitoring, health monitoring, industry monitoring and many more. The challenges of the successful WSN application are the energy consumption problem. since the small, portable batteries integrated into the sensor chips cannot be re-charged easily from an economical point of view. This work focusses on prolonging the network lifetime of WSNs by reducing and balancing energy consumption during routing process from hop number point of view. In this paper, performance simulation was done between two types of protocols LEACH that uses single hop path and MODLEACH that uses multi hop path by using Intel Care i3 CPU (2.13GHz) laptop with MATLAB (R2014a). Th

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Iraqi Journal Of Science
Multi-layer Multi-objective Evolutionary Algorithm for Adjustable Range Set Covers Problem in Wireless Sensor Networks
...Show More Authors

Establishing complete and reliable coverage for a long time-span is a crucial issue in densely surveillance wireless sensor networks (WSNs). Many scheduling algorithms have been proposed to model the problem as a maximum disjoint set covers (DSC) problem. The goal of DSC based algorithms is to schedule sensors into several disjoint subsets. One subset is assigned to be active, whereas, all remaining subsets are set to sleep. An extension to the maximum disjoint set covers problem has also been addressed in literature to allow for more advance sensors to adjust their sensing range. The problem, then, is extended to finding maximum number of overlapped set covers. Unlike all related works which concern with the disc sensing model, the cont

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Al–bahith Al–a'alami
Interactivity on the Website of Monte Carlo International Radio Regarding Iraqi Topics
...Show More Authors

This research aims to identify the means and forms of interactive communication concerning Iraqi topics on the websites of global radio stations, namely Sawa and Monte Carlo. It also seeks to uncover the editorial and artistic interactions related to Iraqi topics on the selected websites chosen as the research sample, comparing them with the editorial interaction within the Iraqi context between the Radio Monte Carlo and Sawa websites.
The research yields several conclusions, including the following:
Iraqis focus their interaction with topics related to Iraq on Facebook for both Radio Monte Carlo and Sawa; Arabs show higher levels of interaction on Twitter with Radio Monte Carlo; Participants on the webs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Physics
Positron Interactions with Some Human Body Organs Using Monte Carlo Probability Method
...Show More Authors

In this study, mean free path and positron elastic-inelastic scattering are modeled for the elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K) and iodine (I). Despite the enormous amounts of data required, the Monte Carlo (MC) method was applied, allowing for a very accurate simulation of positron interaction collisions in live cells. Here, the MC simulation of the interaction of positrons was reported with breast, liver, and thyroid at normal incidence angles, with energies ranging from 45 eV to 0.2 MeV. The model provides a straightforward analytic formula for the random sampling of positron scattering. ICRU44 was used to compile the elemental composition data. In this

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Reliability Estimation for the Exponential Distribution Based on Monte Carlo Simulation
...Show More Authors

        This Research deals with estimation the reliability function for two-parameters Exponential distribution, using different estimation methods ; Maximum likelihood, Median-First Order Statistics, Ridge Regression, Modified Thompson-Type Shrinkage and Single Stage Shrinkage methods. Comparisons among the estimators were made using Monte Carlo Simulation based on statistical indicter mean squared error (MSE) conclude that the shrinkage method perform better than the other methods

View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
6G Wireless Communications Networks: A Comprehensive Survey
...Show More Authors

View Publication
Scopus (202)
Crossref (203)
Scopus Clarivate Crossref
Publication Date
Wed Oct 31 2018
Journal Name
Iraqi Journal Of Science
Evolutionary Based Set Covers Algorithm with Local Refinement for Power Aware Wireless Sensor Networks Design
...Show More Authors

Establishing coverage of the target sensing field and extending the network’s lifetime, together known as Coverage-lifetime is the key issue in wireless sensor networks (WSNs). Recent studies realize the important role of nature-inspired algorithms in handling coverage-lifetime problem with different optimization aspects. One of the main formulations is to define coverage-lifetime problem as a disjoint set covers problem. In this paper, we propose an evolutionary algorithm for solving coverage-lifetime problem as a disjoint set covers function. The main interest in this paper is to reflect both models of sensing: Boolean and probabilistic. Moreover, a heuristic operator is proposed as a local refinement operator to improve the quality

... Show More
View Publication Preview PDF