An experiment was carried out to study the effect of soil organic carbon (SOC) and soil texture on the distance of the wetting front, cumulative water infiltration (I), infiltration rate (IR), saturated water conductivity (Ks), and water holding capacity (WHC). Three levels ( 0, 10, 20, and 30 g OC kg-1 ) from organic carbon (OC) were mixed with different soil materials sandy, loam, and clay texture soils. Field capacity (FC) and permanent wilting point (PWP) were estimated. Soil materials were placed in transparent plastic columns(12 cm soil column ), and water infiltration(I) was measured as a function of time, the distance of the wetting front and Ks. Results showed that advance wetting front as a function of time for soil column was 6 minutes and with no differences between OC levels for sandy soils, while it ranged between 90 minutes (0% OC) - 130 minutes (3% OC) for loam soils, and between 470 minutes (0 %OC) and 590 minutes (1%OC) for clay soils, at the same time cumulative water infiltration(I) increases at the beginning of infiltration and decreases with time and levels of OC. The highest infiltration values were in sandy soils, giving data of 0.05 and 0.12 cm min-1, with no significant differences with OC rates. IR values decreased when OC increased in loam soils, and IR increased exponentially in clay soils with increasing OC levels. The values of Ks decrease with increasing OC for sandy and loam soils, and increase when OC increases above 3% for clay soils. FC and WP values were increased for sandy, loam and clay soils when OC was increased. The AW values decreased for both sandy and clay soils compared to loam soils. It can be concluded that AW can be estimated from FC values regardless of texture and OC by the linear function: AW=0.51(FC)+0.005.
This study is conducted to investigate the validity of using different levels of Rustumiya sewage water for irrigation and their effects on corn growth and some of the chemical properties of the soil such as electrical conductivity and soil pH in extract soil paste , the micro nutrient content in soil and plant which are ( Fe , Mn , Zn , Cu , Cd , Pb ). Three levels of sewage water ( 0 , 50 , 100 )% in two stages were used ,the three levels of wastewater ( without soil fertilization ) were used in the first stage , Where 80 Kg N /D+50Kg P2O5 /D was added to the soil as fertilizer in the control (0%) treatment and 40 Kg N/D+25Kg P2O5/D were added to 50 and 100% levels in the second stage .Corn seeds were planted in 12kg plastic pots in Com
... Show MoreActinomycetes are free, spore-forming, high (G+C) ratio (>55%) saprophytic microorganisms that are widely distributed in most soils, colonize plants, and are prevalent in water. This is frequently accompanied by the production of filament airborne mycelium. Actinomycetes are well-known microcolonies for creating antibiotics and other critical bioactive components that are beneficial to humans. Approximately 70% to 80% of commercially available medications and antiviral active compounds have been synthesized so far. Secondary metabolites produced by microbes have the potential to be used in a variety of sectors, including antimicrobial agents, enzyme technology, pigment manufacture, antitumor agents against cancer cells, and toxin pr
... Show MoreIn this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load at different operating frequencies. The effect of relative density, depth of embedment, foundation area as well as the imposed harmonic load was investigated. It was found that the amplitude of displacement of the foundation increases with increasing the amplitude of dynamic force and operating frequency meanwhile it decreases with increasing the relative density of sand, degree of saturation, depth of embedment and contact area of footing. The maximum displacement was noticed at 33.34 to 41.67 Hz. The maximum displacement amplitude respons
... Show MoreIn this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load at different operating frequencies. The effect of relative density, depth of embedment, foundation area as well as the imposed harmonic load was investigated. It was found that the amplitude of displacement of the foundation increases with increasing the amplitude of dynamic force and operating frequency meanwhile it decreases with increasing the relative density of sand, degree of saturation, depth of embedment and contact area of footing. The maximum displacement was noticed at 33.34 to 41.67 Hz. The maximum displaceme
... Show MoreThe current study involves placing 135 boreholes drilled to a depth of 10 m below the existing ground level. Three standard penetration tests (SPT) are performed at depths of 1.5, 6, and 9.5 m for each borehole. To produce thematic maps with coordinates and depths for the bearing capacity variation of the soil, a numerical analysis was conducted using MATLAB software. Despite several-order interpolation polynomials being used to estimate the bearing capacity of soil, the first-order polynomial was the best among the other trials due to its simplicity and fast calculations. Additionally, the root mean squared error (RMSE) was almost the same for the all of the tried models. The results of the study can be summarized by the production
... Show More