The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recognition applications; the proposed method was evaluated for performance in terms of computational accuracy, convergence analysis, and cost.
HM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023
A revolution called information revolution has recently invaded the world. It is Currently considered one of the most important properties of development to the countries of the world The criteria provided by computers such as accuracy, speed, time saving Storage and restore have led them to be widely used in economy, industry, agriculture, communications, etc., as well as being the major finder of reengineering the operations of innovation. The use of computers in the preparation of budgets will lead to achieve accuracy. Since, the operation draws upon the statistic and quantity estimations about budget items, the computerized balance sheet may save time and effort of preparing mathematical equations annually. According to the problem o
... Show MoreIn this paper the method of singular value decomposition is used to estimate the ridge parameter of ridge regression estimator which is an alternative to ordinary least squares estimator when the general linear regression model suffer from near multicollinearity.
The Internet of Things (IoT) has significantly transformed modern systems through extensive connectivity but has also concurrently introduced considerable cybersecurity risks. Traditional rule-based methods are becoming increasingly insufficient in the face of evolving cyber threats. This study proposes an enhanced methodology utilizing a hybrid machine-learning framework for IoT cyber-attack detection. The framework integrates a Grey Wolf Optimizer (GWO) for optimal feature selection, a customized synthetic minority oversampling technique (SMOTE) for data balancing, and a systematic approach to hyperparameter tuning of ensemble algorithms: Random Forest (RF), XGBoost, and CatBoost. Evaluations on the RT-IoT2022 dataset demonstrat
... Show MoreIn this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
This paper presents a study of wavelet self-organizing maps (WSOM) for face recognition. The WSOM is a feed forward network that estimates optimized wavelet based for the discrete wavelet transform (DWT) on the basis of the distribution of the input data, where wavelet basis transforms are used as activation function.
An optimization calculation is made to find the optimum properties of combined quadrupole lens which consists of electrostatic and magnetic lens. Both chromatic and spherical aberration coefficients are reduced to minimum values and the achromatic aberration is found for many cases. These calculations are achieved with the aid of transfer matrices method and using rectangular model of field distribution, where the path of charged-particles beam traversing the field has been determined by solving the trajectory equation of motion and then the optical properties for lens have been computed with the aid of the beam trajectory along the lens axis. The computations have been concentrated on determining the chromatic and spher
... Show More