The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recognition applications; the proposed method was evaluated for performance in terms of computational accuracy, convergence analysis, and cost.
This paper proposes and studies an ecotoxicant system with Lotka-Volterra functional response for predation including prey protective region. The equilibrium points and the stability of this model have been investigated analytically both locally and globally. Finally, numerical simulations and graphical representations have been utilized to support our analytical findings
Automatic license plate recognition (ALPR) used for many applications especially in security applications, including border control. However, more accurate and language-independent techniques are still needed. This work provides a new approach to identifying Arabic license plates in different formats, colors, and even including English characters. Numbers, characters, and layouts with either 1-line or 2-line layouts are presented. For the test, we intend to use Iraqi license plates as there is a wide range of license plate styles written in Arabic, Kurdish, and English/Arabic languages, each different in style and color. This variety makes it difficult for recent traditional license plate recognition systems and algorithms to recogn
... Show MoreVolleyball is one of the sports that require physical and skill abilities thus many teaching models appeared to teach these abilities like group investigation model. The research aimed at identifying the effect of group investigation model on learning underarm and overhead passing in volleyball. The researchers hypothesized statistical differences between pre and posttests in learning underarm and overhead passing in volleyball as well as differences in posttests of controlling and experimental groups in learning underarm and overhead passing in volleyball. The researcher used the experimental method on (30) second year female students of physical education and sport sciences college/ university of Baghdad. Group investigation model was app
... Show MoreThe cinematic medium consists of a group of elements that overlap with each other in balance, giving it its high influential capabilities, and the character is one of the most important of these elements, as it performs a set of important functions, foremost of which is the transmission of the main ideas to the recipient, and since cinema is an art closely related to the intellectual data of the worlds outside it, it is influenced by them and then reproduces them intellectually more deeply and with a higher vitality through its intermediate elements, including the character, to re-broadcast them to society with a retrograde movement, and the character of the prisoner is one of the cinematic characters that achieved this goal, as we can infe
... Show MoreThe aim of the research is to identify the cognitive method (rigidity flexibility) of third-stage students in the collage of Physical Education and Sports Sciences at The University of Baghdad, as well as to recognize the impact of using the McCarthy model in learning some of skills in gymnastics, as well as to identify the best groups in learning skills, the experimental curriculum was used to design equal groups with pre test and post test and the research community was identified by third-stage students in academic year (2020-2021), the subject was randomly selected two divisions after which the measure of cognitive method was distributed to the sample, so the subject (32) students were distributed in four groups, and which the pre te
... Show MoreA strong sign language recognition system can break down the barriers that separate hearing and speaking members of society from speechless members. A novel fast recognition system with low computational cost for digital American Sign Language (ASL) is introduced in this research. Different image processing techniques are used to optimize and extract the shape of the hand fingers in each sign. The feature extraction stage includes a determination of the optimal threshold based on statistical bases and then recognizing the gap area in the zero sign and calculating the heights of each finger in the other digits. The classification stage depends on the gap area in the zero signs and the number of opened fingers in the other signs as well as
... Show MoreIdentifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show More