The majority of Arab EFL (English as a Foreign Language) learners struggle with speaking English fluency. Iraqi students struggle to speak English confidently due to mispronunciation, grammatical errors, short and long pauses while speaking or feeling confused in normal conversations. Collaborative learning is crucial to enhance student’s speaking skills in the long run. This study aims to state the importance of collaborative learning as a teaching method to EFL learners in the meantime. In this quantitative and qualitative study, specific focus is taken on some of Barros’s views of collaborative learning as a teamwork and some of Pattanpichet’s speaking achievements under four categories: academic benefits, social benefits, generic skills, and negative aspects. 100 undergraduate students, whose level at the first academic year in College of Veterinary Medicine, the University of Baghdad-Iraq, have participated in this experimental study. The results of independent and dependent variables estimated Cronbach’s Alpha high internal consistency. The study data chooses the alternative hypothesis maintaining that the treatment effect was statistically significant. Collaborative learning correlates positively with development of Iraqi EFL learners of speaking skills on academic benefits, social benefits, and generic skills at the level of significance, unlike passive correspondence. It was risen with negative aspects. The main limitations of the current study were that of small sample size of Iraqi EFL learners among medical colleges. The results revealed merely one medical college among other colleges in medicine, science, social and human studies at the University of Baghdad. It has not covered other levels of undergraduate study. The study recommends additional investigations to explore the value of collaborative learning to achieve student’s speaking skills in human and social fields of the Arab and foreign learning communities
Deep Learning Techniques For Skull Stripping of Brain MR Images
One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreIn this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A
... Show MoreHierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutil
... Show MoreThe present work aims to study the combustion characteristics related to syngas-diesel dual-fuel engine operates at lambda value of 1.6 operated by five different replacement ratios (RR) of syngas with diesel, which are (10%, 20%, 30 %, 40 % and 50%). ANSYS Workbench (CFD) was used for simulating the combustion of the syngas-diesel dual-fuel engine. The numerical simulations were carried out on the Ricardo-Hydra diesel engine. The simulation results revealed that the diesel engine’s combustion efficiency was enhanced by increasing the diesel replacement with Syngas fuel. The diesel engine’s combustion efficiency The peak in-cylinder temperature was enhanced from 915.9K to 2790.5K
The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreThis study aims to identify the degree of Arabic language teachers at the secondary stage possessing the teaching competencies necessary to develop the skills of literary savor among their students from the perception of educational leaders in Bisha Province. To achieve the objectives of the study, the descriptive approach was used by adopting a comprehensive survey method. The study sample consisted of (48) school principals and Arabic language supervisors in Bisha Province who supervise the teaching of Arabic language at the secondary level in Bisha Province. The necessary data was collected using a questionnaire. The results of the study revealed that the evaluation of the study sample for the degree to which Arabic language teachers
... Show MoreGiven the importance of possessing the digital competence (DC) required by the technological age, whether for teachers or students and even communities and governments, educational institutions in most countries have sought to benefit from modern technologies brought about by the technological revolution in developing learning and teaching and using modern technologies in providing educational services to learners. Since university students will have the doors to work opened in all fields, the research aims to know their level of DC in artificial intelligence (AI) applications and systems utilizing machine learning (ML) techniques. The descriptive approach was used, as the research community consisted of students from the University
... Show More