Ration power plants, to generate power, have become common worldwide. One such one is the steam power plant. In such plants, various moving parts of heavy machines generate a lot of noise. Operators are subjected to high levels of noise. High noise level exposure leads to psychological as well physiological problems; different kinds of ill effects. It results in deteriorated work efficiency, although the exact nature of work performance is still unknown. To predict work efficiency deterioration, neuro-fuzzy tools are being used in research. It has been established that a neuro-fuzzy computing system helps in identification and analysis of fuzzy models. The last decade has seen substantial growth in development of various neuro-fuzzy systems. Among them, adaptive neuro-fuzzy inference system provides a systematic and directed approach for model building and gives the best possible design parameters in minimum possible time. This study aims to develop a neuro-fuzzy model to predict the effects of noise pollution on human work efficiency as a function of noise level, exposure time, and age of the operators doing complex type of task.
Tamoxifen citrate (TAM) is one of the most regularly used therapy in hormone receptor-positive breast cancer. Although it is a successful treatment, there is a problem with its bioavailability, accordingly this study was designed to improve TAM solubility and reduce its associated toxicity. TAM-Loaded poly (D, L-lactide –co- glycolide) nanostructure (TAM-loaded PLGA) has been synthesized and employed both in vitro and in vivo experiments. The blood hemolysis induced by TAM- loaded PLGA was 4.6 % at 200 µg mL-1, indicating that this nano-construct led to increased red blood cell protection. DNA molecule integrity was assessed and results indicated that DNA strands were protected from destruction at 200 µg mL-1. T
... Show MoreThe concept of implementing e-government systems is growing widely all around the world and becoming an interest to all governments. However, governments are still seeking for effective ways to implement e-government systems properly and successfully. As services of e-government increased and citizens’ demands expand, the e-government systems become more costly to satisfy the growing needs. The cloud computing is a technique that has been discussed lately as a solution to overcome some problems that an e-government implementation or expansion is going through. This paper is a proposal of a new model for e-government on basis of cloud computing. E-Government Public Cloud Model EGPCM, for e-government is related t
... Show MoreIn this paper, the deterministic and the stochastic models are proposed to study the interaction of the Coronavirus (COVID-19) with host cells inside the human body. In the deterministic model, the value of the basic reproduction number determines the persistence or extinction of the COVID-19. If , one infected cell will transmit the virus to less than one cell, as a result, the person carrying the Coronavirus will get rid of the disease .If the infected cell will be able to infect all cells that contain ACE receptors. The stochastic model proves that if are sufficiently large then maybe give us ultimate disease extinction although , and this facts also proved by computer simulation.
Abstract
Travel Time estimation and reliability measurement is an important issues for improving operation efficiency and safety of traffic roads networks. The aim of this research is the estimation of total travel time and distribution analysis for three selected links in Palestine Arterial Street in Baghdad city. Buffer time index results in worse reliability conditions. Link (2) from Bab Al Mutham intersection to Al-Sakara intersection produced a buffer index of about 36% and 26 % for Link (1) Al-Mawall intersection to Bab Al- Mutham intersection and finally for link (3) which presented a 24% buffer index. These illustrated that the reliability get worst for link
... Show MoreBefore setting a turbine in a wind farms allocated for power generation, it must be know the appropriate turbine class for that site depending on the turbulence intensity of the winds in the studied area and the IEC-61400 standard. The importance of identifying a class of wind turbine is due to the complex environmental conditions that produce turbulent air which, in turn, may cause damage to the turbine blades and weakness in the performance. Therefore, the ambient turbulence intensity is a very important factor in determining the performance and productivity of the wind turbines.
In this research we calculate Turbulence Intensity "TI" in the province of Nasiriyah, south of Iraq (Lat. 31.052049 , Lon. 46.261021) for the years 2008, 2
It is recognized that organisms live and interact in groups, exposing them to various elements like disease, fear, hunting cooperation, and others. As a result, in this paper, we adopted the construction of a mathematical model that describes the interaction of the prey with the predator when there is an infectious disease, as well as the predator community's characteristic of cooperation in hunting, which generates great fear in the prey community. Furthermore, the presence of an incubation period for the disease provides a delay in disease transmission from diseased predators to healthy predators. This research aims to examine the proposed mathematical model's solution behavior to better understand these elements' impact on an eco-epidemi
... Show MoreIn recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show MoreIn this paper, a compartmental differential epidemic model of COVID-19 pandemic transmission is constructed and analyzed that accounts for the effects of media coverage. The model can be categorized into eight distinct divisions: susceptible individuals, exposed individuals, quarantine class, infected individuals, isolated class, infectious material in the environment, media coverage, and recovered individuals. The qualitative analysis of the model indicates that the disease-free equilibrium point is asymptotically stable when the basic reproduction number R0 is less than one. Conversely, the endemic equilibrium is globally asymptotically stable when R0 is bigger than one. In addition, a sensitivity analysis is conducted to determine which
... Show MoreThe availability of low- cost adsorbent namely Al-Khriet ( a substance found in the legs of Typha Domingensis) as an agricultural waste material, for the removal of lead and cadmium from aqueous solution was investigated. In the batch tests experimental parameters were studied, including adsorbent dosage between (0.2-1) g, initial metal ions concentration between (50-200) ppm (single and binary) and contact time (1/2-6) h. The removal percentage of each ion onto Al-Khriet reached equilibrium in about 4 hours. The highest adsorption capacity was for lead (96%) while for cadmium it was (90%) with 50 ppm ions concentration, 1 g dosage of adsorbent and pH 5.5. Adsorption capacity in the binary mixture were reduce at about 8% for lead a
... Show MoreIn this article, we propose a Bayesian Adaptive bridge regression for ordinal model. We developed a new hierarchical model for ordinal regression in the Bayesian adaptive bridge. We consider a fully Bayesian approach that yields a new algorithm with tractable full conditional posteriors. All of the results in real data and simulation application indicate that our method is effective and performs very good compared to other methods. We can also observe that the estimator parameters in our proposed method, compared with other methods, are very close to the true parameter values.