في الدراسة الحالية، تم تصنيع جسيمات ZrO2 النانوية باستخدام مستخلص نباتي مشتق من نبات Vitex agnus castus، ووسط قلوي مثل هيدروكسيد الصوديوم. تم استخدام أسلوب التخليق الحيوي لتحضير جزيئات أوكسيد الزركونيوم النانوية لهذا المشروع البحثي. تتميز هذه الطريقة عن غيرها بسبب فعاليتها من حيث التكلفة وبساطتها وقلة المخاطر المحتملة. وتم تشخيص العينات المحضرة باستخدام المجهر الإلكتروني النافذ TEM، المجهر الإلكتروني الماسح SEM، التحليل الطيفي بالأشعة تحت الحمراء بتحويل فورييه FT-IR، التحليل الطيفي فوق البنفسجي المرئي. ، حيود الأشعة السينية، والتحليل الطيفي للأشعة السينية المشتتة من الطاقة EDX. تم تحديد حجم البلورة باستخدام حيود الأشعة السينية من معادلة ديباي-شيرر بقيمة 26.37 نانومتر. تم استخدام المجهر الإلكتروني الماسح والمجهر الإلكتروني النافذ للتأكد من حجم جسيمات ZrO2 النانوية. في هذه الدراسة، أظهرت هذه الجسيمات النانوية مستويات متفاوتة من النشاط ضد نوعين من البكتيريا إيجابية الجرام ( Staphylococcus aurous و Streptococcus pneumonia)، ونوعين من البكتيريا السالبة الجرام (Proteus mirabilis و Escharia coli)، ونوع واحد من الفطريات وهو Candida. ومن المثير للاهتمام، أنه تم الكشف عن الإمكانات المضادة للسرطان لجسيمات أوكسيد الزركونيوم النانوية المركبة من خلال اختبار MTT بتركيز متنوعة لسرطان الرئة A549 من خط الخلية. وأظهرت نسبة التثبيط زيادة مع زيادة التركيز. إن حساب تثبيط نصف الخلايا IC50، والذي كان يساوي (58.4 ملغم/مل)، يشير إلى أن جزيئات أكسيد الزركونيوم النانوية لديها القدرة على الاستفادة منها في علاج السرطان
Background: Non-small cell lung cancer (NSCLC) is caused of 85% of all lung cancers. Among the most important factors for lung tumor growth and proliferation are the tyrosine kinase receptors that coded by the epidermal growth factor recep-tor (EGFR) gene. Activation of EGFR ultimately leads to developing of lung cancer. The present study was undertaken with an objective to detect EGFR mutations in bronchial wash from Iraqi patients with NSCLC before treatment. Methods: DNA was extracted from bronchial wash samples collected from 50 patients with NSCLC by using a Qiamp DNA Mini Kit (Qiagen, Hilden, Germany). Then, EGFR mutations were determined by using real-time RCR combined with two technologies, Amplification Refractory Mutation System (
... Show MoreBackground: Non-small cell lung cancer (NSCLC) is caused of 85% of all lung cancers. Among the most important factors for lung tumor growth and proliferation are the tyrosine kinase receptors that coded by the epidermal growth factor recep-tor (EGFR) gene. Activation of EGFR ultimately leads to developing of lung cancer. The present study was undertaken with an objective to detect EGFR mutations in bronchial wash from Iraqi patients with NSCLC before treatment. Methods: DNA was extracted from bronchial wash samples collected from 50 patients with NSCLC by using a Qiamp DNA Mini Kit (Qiagen, Hilden, Germany). Then, EGFR mutations were determined by using real-time RCR combined with two technologies, Amplification Refractory Mutation System (
... Show MoreThis study investigates the stomach morphology and histochemistry of Clarias gariepinus. Grossly, the stomach is a J-shaped organ with three distinct regions: cardiac, fundic, and pyloric. Histologically, its wall comprises four layers: mucosa, submucosa, muscularis externa, and serosa. The mucosa exhibits broad longitudinal folds lined by high columnar cells with basal oval nuclei. These cells contain apical mucosubstances that react positively with Periodic Acid Schiff (PAS) stain and negatively with Alcian Blue (AB). Gastric pits result from mucosal invaginations. Glands are present in the fundic and cardiac regions but absent in the pyloric. Oxynticopeptic cells exclusively line the fundic glands. Enteroendocrine cells are distr
... Show MoreThis study investigates the stomach morphology and histochemistry of Clarias gariepinus. Grossly, the stomach is a J-shaped organ with three distinct regions: cardiac, fundic, and pyloric. Histologically, its wall comprises four layers: mucosa, submucosa, muscularis externa, and serosa. The mucosa exhibits broad longitudinal folds lined by high columnar cells with basal oval nuclei. These cells contain apical mucosubstances that react positively with Periodic Acid Schiff (PAS) stain and negatively with Alcian Blue (AB). Gastric pits result from mucosal invaginations. Glands are present in the fundic and cardiac regions but absent in the pyloric. Oxynticopeptic cells exclusively line the fundic glands. Enteroendocrine cells are distr
... Show MoreThe study in duded isolation and identification of microbial isolates from oral cavity to 10 volunteers, diagnosed within the three groups: Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus spp. and Candida albicans . The sensitivity test of all isolates bacteria Streptococcus spp. , S. aureus and S. epidermidis showed high resistance to Ampicillin(100)%,followed Methicillin (88.88)% and Amoxicillin / clavulanic acid(77.77)%, while the resistance for each of Vancomycin and Amoxicillin were (66.66)%, and the resistance to Erythromycin and Pencillin (55.55)% to each of them. The results showed less resistance to Trimethoprim (22.22)% and Cefalotine (11.11)% of all bacteria isolate. Investigation of the pre
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreCodes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show More