As one type of heating furnaces, the electric heating furnace (EHF) typically suffers from time delay, non-linearity, time-varying parameters, system uncertainties, and harsh en-vironment of the furnace, which significantly deteriorate the temperature control process of the EHF system. In order to achieve accurate and robust temperature tracking performance, an integration of robust state feedback control (RSFC) and a novel sliding mode-based disturbance observer (SMDO) is proposed in this paper, where modeling errors and external disturbances are lumped as a lumped disturbance. To describe the characteristics of the EHF, by using convection laws, an integrated dynamic model is established and identified as an uncertain nonlinear second order system. The SMDO is newly designed to estimate the lumped disturbance, where the estimation error converges to zero asymptotically. The estimation of the disturbances is then used in the control law of the RSFC to reject the system's lumped disturbance. The analytical results demonstrate that the proposed method is asymptotically stable with guaranteeing the tracking error convergence to zero even in the presence of external disturbances. Finally, the comparative simulation study shows the effectiveness of proposed method for the temperature control tracking of the considered furnace application.
Bootstrap is one of an important re-sampling technique which has given the attention of researches recently. The presence of outliers in the original data set may cause serious problem to the classical bootstrap when the percentage of outliers are higher than the original one. Many methods are proposed to overcome this problem such Dynamic Robust Bootstrap for LTS (DRBLTS) and Weighted Bootstrap with Probability (WBP). This paper try to show the accuracy of parameters estimation by comparison the results of both methods. The bias , MSE and RMSE are considered. The criterion of the accuracy is based on the RMSE value since the method that provide us RMSE value smaller than other is con
... Show MoreDrones play a vital role in the fundamental aspects of Industry 4.0 by converting conventional warehouses into intelligent ones, particularly in the realm of barcode scanning. Various potential issues frequently arise during barcode scanning by drones, specifically when the drone camera has difficulty obtaining distinct images due to certain factors, such as distance, capturing the image whilst flying, noise in the environment and different barcode dimensions. In addressing these challenges, this study proposes an approach that combines a proportional–integral–derivative (PID) controller with image processing techniques. The PID controller is responsible for continuously monitoring the camera’s input, detecting the difference
... Show MoreSupport vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreIn the last two decades, arid and semi-arid regions of China suffered rapid changes in the Land Use/Cover Change (LUCC) due to increasing demand on food, resulting from growing population. In the process of this study, we established the land use/cover classification in addition to remote sensing characteristics. This was done by analysis of the dynamics of (LUCC) in Zhengzhou area for the period 1988-2006. Interpretation of a laminar extraction technique was implied in the identification of typical attributes of land use/cover types. A prominent result of the study indicates a gradual development in urbanization giving a gradual reduction in crop field area, due to the progressive economy in Zhengzhou. The results also reflect degradati
... Show MoreAS Salman, SK Hameed…, Karbala Journal of Physical Education Sciences, 2020
Complexes of (Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+) with the ligand Ethyl cyano (2-methyl carboxylate phenyl azo acetate) (ECA) have been prepared and characterized by FTIR, (UV-Visible), Atomic absorption spectroscopy, Molar conductivity measurements and magnetic moments measurements. The following general formula has been suggested for the prepared complexes [M(ECA)2]Cl2 where M = (Co2+, Ni2+, Cu2+ ,Zn2+, Cd2+, Hg2+) and the geometry is octahedral.
Abstract. Hassan FM, Mahdi WM, Al-Haideri HH, Kamil DW. 2022. Identification of new species record of Cyanophyceae in Diyala River, Iraq based on 16S rRNA sequence data. Biodiversitas 23: 5239-5246. The biodiversity and water quality of the Diyala River require screening water in terms of biological contamination, because it is the only water source in Diyala City and is used for many purposes. This study aimed to identify a new species record of Cynaophyceae and emphasize the importance of using molecular methods beside classic morphological approaches, particularly in the water-shrinkage-aqua system. Five different sites along Diyala River were selected for Cyanophyceae identification. Morphological examination and 16S rRNA sequen
... Show More