Restoration of degraded lands by adoption of recommended conservation management practices can rehabilitate watersheds and lead to improving soil and water quality. The objective was to evaluate the effects of grass buffers (GBs), biomass crops (BCs), grass waterways (GWWs), agroforestry buffers (ABs), landscape positions, and distance from tree base for AB treatment on soil quality compared with row crop (RC) (corn [Zea mays L.]–soybean [Glycine max (L.) Merr.] rotation) on claypan soils. Soil samples were taken from 10‐cm‐depth increments from the soil surface to 30 cm for GB, BC, GWW, and RC with three replicates. Soil samples were collected from summit, backslope, and footslope landscape positions. Samples were taken at 50‐ and 150‐cm distances from the tree base. β‐Glucosidase, β‐glucosaminidase, dehydrogenase, fluorescein diacetate hydrolase (FDA), soil organic carbon (SOC), total nitrogen (TN), active carbon (AC), and water‐stable aggregates (WSA) were measured. Results showed that β‐glucosidase, β‐glucosaminidase, dehydrogenase, FDA, AC, WSA, and TN values were significantly greater (P < 0.01) for the GB, BC, GWW, and AB treatments than for the RC treatment. The first depth (0–10 cm) revealed the highest values for all soil quality parameters relative to second and third depths. The footslope landscape had the highest parameter values compared with summit and backslope positions. The 50‐cm distance of AB treatment had higher values than the 150‐cm distance for all measured parameters. Results showed that perennial vegetation practices enhanced soil quality by improving soil microbial activity and SOC.
Core Ideas
Permanent vegetative management (trees and grasses) enhanced soil quality.
Perennial practices improved microbial activity and increased soil organic carbon.
Perennial vegetative practices have agricultural and environmental significance.
Establishing perennial practices is an effective approach to enhance soil quality.
This study aims to find the effect of water-cement ratio on the compressive strength of concrete by using ultrasonic pulse velocity test (UPVT). Over 230 standard cube specimens were used in this study, with dimensions of 150mm, and concrete cubes were cured in water at 20 °C. Also, the specimens used in the study were made of concrete with varied water-cement ratio contents from 0.48 to 0.59. The specimens were taken from Diyarbakir-Turkey concrete centers and tested at the structure and material science lab, civil engineering, faculty of engineering from Dicle University. The UPV measurement and compressive strength tests were carried out at the concrete age of 28 days. Their UPV and compressive strength ranged
The triggering effect for the face pumping of Nd:YVO4 disc medium of 4×5×0.5 mm was investigated using bulk diode laser at different resonator cavity length in pulse mode and at repetition rate of 1.3kHz. The maximum emitted peak power was found to be 100, 82, and 66 mW for resonator lengths of 10, 13.5, and 17.5 cm respectively, while the threshold pumping power was found to be 41mW. The maximum emitted peak power obtained was 300 mW when using external triggering and 10cm length, with repetition of 3Hz.
Obliquely deposited (70o) Bi, Sb, and Bi-Sb alloy thin films have been prepared by thermal resistive technique. Structural properties of these films were studied using XRD. Their resistance and voltage responsivity for Nd:YAG and CO2 laser pulses have been recorded as function of operating temperature between 10 oC and 120 oC. It was found that the maximum responsivity for these detectors can be obtained at 75 oC. On the other hand, the dependence of responsivity on the width of detectors was investigated.
The current research aims to identify the typical effect of Flower and Coscroft on expressive performance and the development of lateral thinking among literary fifth-grade students. To achieve the research objective, the researcher chose a sample of (90) female students from the fifth literary grade, with two experimental groups and a control group. The research groups are of six subjects. The research found that the two experimental groups have more expressive performance than the control group. Students of the first experimental group outperformed the students of the second experimental group in expressive performance and lateral thinking tests. In light of the findings of the research, the researcher
Objective: The aim of this study was to evaluate the effect of pumice, burning investment material and black sand on the surface roughness of heat cure acrylic resin. Methodology: Sixty specimens were prepared from pink heat cure acrylic resin, the specimens where grouped into; 20 specimens which polished with pumice and water (control group); 20 specimens which polished with investment material (after burning it) and water; and 20 specimens which polished with black sand and water. The average surface roughness of specimens after polishing procedure had been determined by profilometer (surface roughness tester). Results: Through the application of ANOVA and LSD tests, the result of this study showed that there wa
Background: The main drawback of soft lining materials was that they debonded from the denture base after a certain period of usage. Therefore, the purpose of this research was to determine the impact of oxygen and argon plasma treatment on the shear bonding strength of soft liners to two different kinds of denture base materials: conventional acrylic resin and high impact acrylic resin. Materials and Methods: Heat cure conventional and high impact acrylic blocks (40 for each group) were prepared. A soft liner connected the final test specimen of two blocks of each acrylic material. Shear bond strength (SBS) was assessed using universal testing machine. Additional blocks were also prepared for analyzing Vickers microhardness, contact ang
The energy density state are the powerful factor for evaluate the validity of a material in any application. This research focused on examining the electrical properties of the Se6Te4- xSbx glass semiconductor with x=1, 2 and 3, using the thermal evaporation technique. D.C electrical conductivity was used by determine the current, voltage and temperatures, where the electrical conductivity was studied as a function of temperature and the mechanical electrical conduction were determined in the different conduction regions (the extended and localized area and at the Fermi level). In addition, the density of the energy states in these regions is calculated using the mathematical equations. The constants of energy density states are det
Thin films Tin sulfide SnS pure and doped with different ratios of Cu (X=0, 0.01, 0.03 and 0.05) were prepared using thermal evaporation with a vacuum of 4*10-6mbar on two types of substrates n-type Si and glass with (500) nm thickness for solar cell application. X-ray diffraction and AFM analysis were carried out to explain the influence of Cu ratio dopant on structural and morphological properties respectively. SnS phase appeared forming orthorhombic structure with preferred orientation (111), increase the crystallinity degree and surface roughness with increase Cu ratio. UV/Visible measurement revealed the decrease in energy gap from 1.9eV for pure SnS to 1.5 for SnS: Cu (0.05) making these samples suitable f
The study was conducted during spring seasons of 2000 and 2001.The aim was to study the changes in the moisture content of sunflower plants during growth stages under hardening conditions to drought tolerance .Agricultural practices were made according to recommendation. Asplit-split plots design was used with three replications. The main plots included irrigation treatments:irrigation to100%(full irrigation),75and50%of available water. The sub plots were the cultivars Euroflor and Flame.The sub-sub plots represented four seed soaking treatments: Control (unsoaked), soaking in water ,Paclobutrazol solution(250ppm),and Pix solution(500ppm). The soaking continued for 24 hours then seeds were dried at room temperature until they regained t