Restoration of degraded lands by adoption of recommended conservation management practices can rehabilitate watersheds and lead to improving soil and water quality. The objective was to evaluate the effects of grass buffers (GBs), biomass crops (BCs), grass waterways (GWWs), agroforestry buffers (ABs), landscape positions, and distance from tree base for AB treatment on soil quality compared with row crop (RC) (corn [Zea mays L.]–soybean [Glycine max (L.) Merr.] rotation) on claypan soils. Soil samples were taken from 10‐cm‐depth increments from the soil surface to 30 cm for GB, BC, GWW, and RC with three replicates. Soil samples were collected from summit, backslope, and footslope landscape positions. Samples were taken at 50‐ and 150‐cm distances from the tree base. β‐Glucosidase, β‐glucosaminidase, dehydrogenase, fluorescein diacetate hydrolase (FDA), soil organic carbon (SOC), total nitrogen (TN), active carbon (AC), and water‐stable aggregates (WSA) were measured. Results showed that β‐glucosidase, β‐glucosaminidase, dehydrogenase, FDA, AC, WSA, and TN values were significantly greater (P < 0.01) for the GB, BC, GWW, and AB treatments than for the RC treatment. The first depth (0–10 cm) revealed the highest values for all soil quality parameters relative to second and third depths. The footslope landscape had the highest parameter values compared with summit and backslope positions. The 50‐cm distance of AB treatment had higher values than the 150‐cm distance for all measured parameters. Results showed that perennial vegetation practices enhanced soil quality by improving soil microbial activity and SOC.
Core Ideas
Permanent vegetative management (trees and grasses) enhanced soil quality.
Perennial practices improved microbial activity and increased soil organic carbon.
Perennial vegetative practices have agricultural and environmental significance.
Establishing perennial practices is an effective approach to enhance soil quality.
Researching the effects of the research and
technological development contract, determining its extent
and demarcating the boundaries of the obligations imposed
in it, is the cornerstone of economic growth and
development, because defining these obligations removes
the ambiguity and conflict between interests, by stating the
rights owed to each party and even trying to reconcile them,
or impose protection by specifying guarantees that are
compatible with the essence of the R&D contract, For the
purpose of studying the subject thoroughly, we will divide
this research into two sections.
The first is devoted to identifying the parties to the
research and technological development contract.
As for the other topic, we will explain the obligation
In the last decades, using mineral admixture in concrete became very necessary to improve concrete properties and reduce CO2 emissions associated with the cement production process. Subsequently, more sustainable concrete can be obtained. Ternary blended cement containing two different types of mineral admixture can achieve ambitious steps in this trend. In this research, the synergic effects of mineral admixtures in ternary blended cement and its effects on concrete fresh properties, strength, durability, and efficiency factors of mineral admixture in ternary blended cement, were reviewed. The main conclusion reached after reviewing many literature pieces is that the concrete with ternary blended cement
Recommender Systems are tools to understand the huge amount of data available in the internet world. Collaborative filtering (CF) is one of the most knowledge discovery methods used positively in recommendation system. Memory collaborative filtering emphasizes on using facts about present users to predict new things for the target user. Similarity measures are the core operations in collaborative filtering and the prediction accuracy is mostly dependent on similarity calculations. In this study, a combination of weighted parameters and traditional similarity measures are conducted to calculate relationship among users over Movie Lens data set rating matrix. The advantages and disadvantages of each measure are spotted. From the study, a n
In this study, the concentrations of uranium for four species of plants; Spinacia, Brassica Oleracea, BEASSICA Oleracea Var Capitata and Beta Vulgaris were measured in addition to the measurement of uranium concentrations in the selected soil by calculating the number of significant traces of alpha in CR-39. The 2.455 Bq/kg in Spinacia plant were the highest concentration while the lowest concentration of uranium were 1.91 Bq/kg in BEASSICA Oleracea Var Capitata plant. As for the transfer factor, the highest value 0.416 were found in Spinacia plant and the lowest value 0.323 were found in BEASSICA Oleracea Var Capitata plant. The uranium in the models studied in it did not exceed the international limit, according to the International Atomi
Subsurface soil water retention (SWRT) is a recent technology for increasing the crop yield, water use efficiency and then the water productivity with less amount of applied water. The goal of this research was to evaluate the existing of SWRT with the influence of surface and subsurface trickle irrigation on economic water productivity of cucumber crop. Field study was carried out at the Hawr Rajab district of Baghdad governorate from October 1st, to December 31st, 2017. Three experimental treatments were used, treatment plot T1 using SWRT with subsurface trickle irrigation, plot T2 using SWRT with surface trickle irrigation, while plot T3 without using SWRT and using surface tickle irrigation system. The obtained results showed th
In this study, gamma-ray spectrometry with an HPGe detector was used to measure the specific activity concentrations of 226Ra, 232Th, and 40K in soil samples collected from IT1 oil reservoirs in Kirkuk city, northeast Iraq. The “spectral line Gp” gamma analysis software package was used to analyze the spectral data. 226Ra specific activity varies from 9 0.34 Bq.kg-1 to 17 0.47 Bq.kg-1. 232Th specific activity varies from 6.2 0.08 Bq.kg-1 to 18 0.2 Bq.kg-1. 40K specific activity varies from 25 0.19 Bq.kg-1 to 118 0.41 Bq.kg-1. The radiological hazard due to the radiation emitted from natural r
Nowadays, most of the on-chip plasmonic single-photon sources emit an unpolarized stream of single photons that demand a subsequent polarizer stage in a practical quantum cryptography system. In this paper, we numerically demonstrated the coupling of the light emitted from a quantum emitter (QE) at 700 nm wavelength to the propagation mode supported by an on-chip hybrid plasmonic waveguide (HPW) polarization rotator. Our results proved that the light emitted is linearly polarized at 0º, 45º/−45º, and 90º with propagation lengths of 5 μm, 3.3 μm, and 3.9 μm, respectively. Moreover, high power-conversion efficiency was obtained from an applied transverse magnetic (TM) mode (0º-polarization) to a transverse electric (TE) (90º-polari