Restoration of degraded lands by adoption of recommended conservation management practices can rehabilitate watersheds and lead to improving soil and water quality. The objective was to evaluate the effects of grass buffers (GBs), biomass crops (BCs), grass waterways (GWWs), agroforestry buffers (ABs), landscape positions, and distance from tree base for AB treatment on soil quality compared with row crop (RC) (corn [Zea mays L.]–soybean [Glycine max (L.) Merr.] rotation) on claypan soils. Soil samples were taken from 10‐cm‐depth increments from the soil surface to 30 cm for GB, BC, GWW, and RC with three replicates. Soil samples were collected from summit, backslope, and footslope landscape positions. Samples were taken at 50‐ and 150‐cm distances from the tree base. β‐Glucosidase, β‐glucosaminidase, dehydrogenase, fluorescein diacetate hydrolase (FDA), soil organic carbon (SOC), total nitrogen (TN), active carbon (AC), and water‐stable aggregates (WSA) were measured. Results showed that β‐glucosidase, β‐glucosaminidase, dehydrogenase, FDA, AC, WSA, and TN values were significantly greater (P < 0.01) for the GB, BC, GWW, and AB treatments than for the RC treatment. The first depth (0–10 cm) revealed the highest values for all soil quality parameters relative to second and third depths. The footslope landscape had the highest parameter values compared with summit and backslope positions. The 50‐cm distance of AB treatment had higher values than the 150‐cm distance for all measured parameters. Results showed that perennial vegetation practices enhanced soil quality by improving soil microbial activity and SOC.
Core Ideas
Permanent vegetative management (trees and grasses) enhanced soil quality.
Perennial practices improved microbial activity and increased soil organic carbon.
Perennial vegetative practices have agricultural and environmental significance.
Establishing perennial practices is an effective approach to enhance soil quality.
An edge dominating set of a graph is said to be an odd (even) sum degree edge dominating set (osded (esded) - set) of G if the sum of the degree of all edges in X is an odd (even) number. The odd (even) sum degree edge domination number is the minimum cardinality taken over all odd (even) sum degree edge dominating sets of G and is defined as zero if no such odd (even) sum degree edge dominating set exists in G. In this paper, the odd (even) sum degree domination concept is extended on the co-dominating set E-T of a graph G, where T is an edge dominating set of G. The corresponding parameters co-odd (even) sum degree edge dominating set, co-odd (even) sum degree edge domination number and co-odd (even) sum degree edge domin
Today, the role of cloud computing in our day-to-day lives is very prominent. The cloud computing paradigm makes it possible to provide demand-based resources. Cloud computing has changed the way that organizations manage resources due to their robustness, low cost, and pervasive nature. Data security is usually realized using different methods such as encryption. However, the privacy of data is another important challenge that should be considered when transporting, storing, and analyzing data in the public cloud. In this paper, a new method is proposed to track malicious users who use their private key to decrypt data in a system, share it with others and cause system information leakage. Security policies are also considered to be int
This study came to discuss the subject of industries dependent on petrochemical industries in Iraq (plastic as a model) during the period 2005–2020, and the study concluded that the plastic industries contribute to areas of advancement and progress and opportunities to deal efficiently with the challenges posed by the new variables, the most important of which is the information revolution. communications and trade liberalization, and this is what contributes to the competitiveness of these industries. And because the petrochemical industry in Iraq has an active role in establishing plastic industrial clusters and clusters of micro, small, and medium industries by providing the necessary feedstock for these industries in various fields
Let A be a unital algebra, a Banach algebra module M is strongly fully
stable Banach A-module relative to ideal K of A, if for every submodule N of M and
for each multiplier θ : N → M such that θ(N) ⊆ N ∩ KM. In this paper, we adopt
the concept of strongly fully stable Banach Algebra modules relative to an ideal which
generalizes that of fully stable Banach Algebra modules and we study the properties
and characterizations of strongly fully stable Banach A-module relative to ideal K of A.
Leap Motion Controller (LMC) is a gesture sensor consists of three infrared light emitters and two infrared stereo cameras as tracking sensors. LMC translates hand movements into graphical data that are used in a variety of applications such as virtual/augmented reality and object movements control. In this work, we intend to control the movements of a prosthetic hand via (LMC) in which fingers are flexed or extended in response to hand movements. This will be carried out by passing in the data from the Leap Motion to a processing unit that processes the raw data by an open-source package (Processing i3) in order to control five servo motors using a micro-controller board. In addition, haptic setup is proposed using force sensors (F
Acid treatment is a widely used stimulation technique in the petroleum industry. Matrix acidizing is regarded as an effective and efficient acidizing technique for carbonate formations that leads to increase the fracture propagation, repair formation damage, and increase the permeability of carbonate rocks. Generally, the injected acid dissolves into the rock minerals and generates wormholes that modify the rock structure and enhance hydrocarbon production. However, one of the key issues is the associated degradation in the mechanical properties of carbonate rocks caused by the generated wormholes, which may significantly reduce the elastic properties and hardness of rocks. There have been several experimental and simulation studies regardi
Rotational Piezoelectric Energy Harvesting (RPZTEH) is widely used due to mechanical rotational input power availability in industrial and natural environments. This paper reviews the recent studies and research in RPZTEH based on its excitation elements and design and their influence on performance. It presents different groups for comparison according to their mechanical inputs and applications, such as fluid (air or water) movement, human motion, rotational vehicle tires, and other rotational operational principal including gears. The work emphasises the discussion of different types of excitations elements, such as mass weight, magnetic force, gravity force, centrifugal force, gears teeth, and impact force, to show their effect