Alzheimer’s disease (AD) is an age-related progressive and neurodegenerative disorder, which is characterized by loss of memory and cognitive decline. It is the main cause of disability among older people. The rapid increase in the number of people living with AD and other forms of dementia due to the aging population represents a major challenge to health and social care systems worldwide. Degeneration of brain cells due to AD starts many years before the clinical manifestations become clear. Early diagnosis of AD will contribute to the development of effective treatments that could slow, stop, or prevent significant cognitive decline. Consequently, early diagnosis of AD may also be valuable in detecting patients with dementia who have not obtained a formal early diagnosis, and this may provide them with a chance to access suitable healthcare facilities. An early diagnosis biomarker capable of measuring brain cell degeneration due to AD would be valuable. Potentially, electroencephalogram (EEG) can play a valuable role in the early diagnosis of AD. EEG is noninvasive and low cost, and provides valuable information about brain dynamics in AD. Thus, EEG-based biomarkers may be used as a first-line decision-support tool in AD diagnosis and could complement other AD biomarkers.
In networking communication systems like vehicular ad hoc networks, the high vehicular mobility leads to rapid shifts in vehicle densities, incoherence in inter-vehicle communications, and challenges for routing algorithms. It is necessary that the routing algorithm avoids transmitting the pockets via segments where the network density is low and the scale of network disconnections is high as this could lead to packet loss, interruptions and increased communication overhead in route recovery. Hence, attention needs to be paid to both segment status and traffic. The aim of this paper is to present an intersection-based segment aware algorithm for geographic routing in vehicular ad hoc networks. This algorithm makes available the best route f
... Show MoreThe transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show MoreCassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreSensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte
... Show MoreAfter baking the flour, azodicarbonamide, an approved food additive, can be converted into carcinogenic semicarbazide hydrochloride (SEM) and biurea in flour products. Thus, determine SEM in commercial bread products is become mandatory and need to be performed. Therefore, two accurate, precision, simple and economics colorimetric methods have been developed for the visual detection and quantitative determination of SEM in commercial flour products. The 1st method is based on the formation of a blue-coloured product with λmax at 690 nm as a result of a reaction between the SEM and potassium ferrocyanide in an acidic medium (pH 6.0). In the 2nd method, a brownish-green colored product is formed due to the reaction between the SEM and phosph
... Show MoreA novel planar type antenna printed on a high permittivity Rogers’ substrate is proposed for early stage microwave breast cancer detection. The design is based on a p-shaped wide-slot structure with microstrip feeding circuit to eliminate losses of transmission. The design parameters are optimized resulting in a good reflection coefficient at −10 dB from 4.5 to 10.9 GHz. Imaging result using inhomogeneous breast phantom indicates that the proposed antenna is capable of detecting a 5 mm size cancerous tumor embedded inside the fibroglandular region with dielectric contrast between the target and the surrounding materials ranging from 1.7 : 1 to 3.6 : 1.
Ankylosing spondylitis is a complex debilitating disease because its pathogenesis is not clear. This study aims at detecting some pathogenesis factors that lead to induce the disease. Chlamydia pneumoniae is one of these pathogenesis factors which acts as a triggering factor for the disease. The study groups included forty Iraqi Ankylosing spondylitis patients and forty healthy persons as a control group. Immunological and molecular examinations were done to detect Chlamydia. pneumoniae in AS group. The immunological results were performed by Enzyme-Linked Immunosorbent Assay (ELISA) to detect anti-IgG and anti-IgM antibodies of C. pneumoniae revealed that five of forty AS patients' samples (12.5%) were positive for anti-IgG and IgM C. pneu
... Show More