Alzheimer’s disease (AD) is an age-related progressive and neurodegenerative disorder, which is characterized by loss of memory and cognitive decline. It is the main cause of disability among older people. The rapid increase in the number of people living with AD and other forms of dementia due to the aging population represents a major challenge to health and social care systems worldwide. Degeneration of brain cells due to AD starts many years before the clinical manifestations become clear. Early diagnosis of AD will contribute to the development of effective treatments that could slow, stop, or prevent significant cognitive decline. Consequently, early diagnosis of AD may also be valuable in detecting patients with dementia who have not obtained a formal early diagnosis, and this may provide them with a chance to access suitable healthcare facilities. An early diagnosis biomarker capable of measuring brain cell degeneration due to AD would be valuable. Potentially, electroencephalogram (EEG) can play a valuable role in the early diagnosis of AD. EEG is noninvasive and low cost, and provides valuable information about brain dynamics in AD. Thus, EEG-based biomarkers may be used as a first-line decision-support tool in AD diagnosis and could complement other AD biomarkers.
Coronary artery disease (CAD) is the leading cause of death worldwide. Certain genetic polymorphisms play an important role in this multifactorial disease, being linked with increased risk of early onset CAD.
To assess six genetic polymorphisms and clinical risk factors in relation to early onset nondiabetic Iraqi Arab CAD patients compared to controls.
This case–contro
The chronic renal disease is a principle common medical dilemma in Iraq. Peripheral arterial disease (PAD) is a prevalent infirmity in the hemodialysis people. The aim of present study was to estimate the prevalence of PAD in subjects with end-stage renal disease (ESRD). This cross-sectional study was done between January 2016 and May 2017 on ESRD subjects regularly attending renal dialysis unit in Al-Kindy teaching hospital in Baghdad, Iraq. PAD was diagnosed on the base of the ankle-brachial index (ABI) measured by using a hand-held Doppler ultrasound. Subjects with ABI ≤0.9 were supposed positive for PAD. A total of 150 ESRD cases were analyzed. The mean age of the subject was 49.52±15 years. Majority of them were males 87(58%). Most
... Show MoreThis study aims to develop a thermosensitive mucoadhesive periodontal in situ gel of secnidazole for local release of drug for treatment of periodontitis, in order to increase the drug residence time and to increase patient compliance while lowering the side effects of the drug.
Cold method was used to prepare 30 formulas of secnidazole periodontal in situ gel, using different concentrations of thermosensitive polymers (poloxamer407 alone or in combination with poloxamer 188) and methyl cellulose (MC ) or hydroxypropyl methylcellulose (HPMC K4M )in different concentrations used as mucoadhesive polymer and the resultant formulations were subjected to several tests such as gelation temperature GT, appearance and pH value. The fo
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreThe basic solution to overcome difficult issues related to huge size of digital images is to recruited image compression techniques to reduce images size for efficient storage and fast transmission. In this paper, a new scheme of pixel base technique is proposed for grayscale image compression that implicitly utilize hybrid techniques of spatial modelling base technique of minimum residual along with transformed technique of Discrete Wavelet Transform (DWT) that also impels mixed between lossless and lossy techniques to ensure highly performance in terms of compression ratio and quality. The proposed technique has been applied on a set of standard test images and the results obtained are significantly encourage compared with Joint P
... Show MoreThe agent-based modeling is currently utilized extensively to analyze complex systems. It supported such growth, because it was able to convey distinct levels of interaction in a complex detailed environment. Meanwhile, agent-based models incline to be progressively complex. Thus, powerful modeling and simulation techniques are needed to address this rise in complexity. In recent years, a number of platforms for developing agent-based models have been developed. Actually, in most of the agents, often discrete representation of the environment, and one level of interaction are presented, where two or three are regarded hardly in various agent-based models. The key issue is that modellers work in these areas is not assisted by simulation plat
... Show MoreAdvances in digital technology and the World Wide Web has led to the increase of digital documents that are used for various purposes such as publishing and digital library. This phenomenon raises awareness for the requirement of effective techniques that can help during the search and retrieval of text. One of the most needed tasks is clustering, which categorizes documents automatically into meaningful groups. Clustering is an important task in data mining and machine learning. The accuracy of clustering depends tightly on the selection of the text representation method. Traditional methods of text representation model documents as bags of words using term-frequency index document frequency (TFIDF). This method ignores the relationship an
... Show MoreThis paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4
... Show More
The aim of this research is to determine the most important and main factors that lead to Preeclampsia. It is also about finding suitable solutions to eradicate these factors and avoid them in order to prevent getting Preeclampsia. To achieve this, a case study sample of (40) patients from Medical City - Oncology Teaching Hospital was used to collect data by a questionnaire which contained (17) reasons to be investigated. The statistical package (SPSS) was used to compare the results of the data analysis through two methods (Radial Bases Function Network) and (Factorial Analysis). Important results were obtained, the two methods determined the same factors that could represent the direct reason which causes Preecla
... Show More 
        