Alzheimer’s disease (AD) is an age-related progressive and neurodegenerative disorder, which is characterized by loss of memory and cognitive decline. It is the main cause of disability among older people. The rapid increase in the number of people living with AD and other forms of dementia due to the aging population represents a major challenge to health and social care systems worldwide. Degeneration of brain cells due to AD starts many years before the clinical manifestations become clear. Early diagnosis of AD will contribute to the development of effective treatments that could slow, stop, or prevent significant cognitive decline. Consequently, early diagnosis of AD may also be valuable in detecting patients with dementia who have not obtained a formal early diagnosis, and this may provide them with a chance to access suitable healthcare facilities. An early diagnosis biomarker capable of measuring brain cell degeneration due to AD would be valuable. Potentially, electroencephalogram (EEG) can play a valuable role in the early diagnosis of AD. EEG is noninvasive and low cost, and provides valuable information about brain dynamics in AD. Thus, EEG-based biomarkers may be used as a first-line decision-support tool in AD diagnosis and could complement other AD biomarkers.
Background: Atrophic postoperative and traumatic scarring are common cosmetic problems for patients. Combining CO2 laser ablation with a fractional photothermolysis system in a treatment known as ablative fractional resurfacing fulfilling the new demands for a lesser risk of side effects and minimal or no downtime.Objective: To assess the safety and efficacy of ablation fractional CO2 laser treatments for surgical scarring .methods: Twenty one patient ( 14 women, and 7 men ) with various skin types , I to IV , aged 3 to 48 years , presents with 24 scars between June and December 2012 , four patients excluded from study because they are not continued in follow up , the remaining 17 patient completed all 3 treatments & 6 months follow
... Show MoreThe development of new cephalosporins with improved activity against resistant microbes, such as, MRSA (methicillin resistant Staph. aureus), P. aeruginosa, is of high potential. Chemical synthesis of two new series of thiadiazole linked to cysteine (series 1) and cephalosporins containing thiadiazole linked to cysteine through disulfide bond (series 2) were achieved. The chemical structures of the synthesized compounds were confirmed using spectral (FT-IR, 1H-NMR) and elemental microanalysis. The incorporation of privileged chemical moieties, such as, thiadiazole, Schiff base, cysteine and sulfonamide, has been found to have great contribution to the antimicrobial activities. Compounds of series 1 (1
... Show MoreNi2O3 nanomaterial, a phase of nickel oxide, is synthesized by a simple chemical process. The pure raw materials used in the present process were nickel chloride hexahydrate NiCl2.6H2O and potassium hydroxide KOH by utilizing temperature at 250 oC for 2 hour. The structural, morphological and optical properties of the synthesized specimens of Ni2O3 were investigated employing diverse techniques such as XRD, AFM, SEM and UV-Vis, respectively. The XRD technique confirms the presence of Ni2O3 nanomaterial with crystal size of 57.083 nm which indexing to the (2θ) of 31.82; this results revealed the Ni2O3 was a ph
... Show MoreBackground: Polyetheretherketone (PEEK) is a promising implant material due to its superior biomechanical strength. However, due to its hydrophobic nature and lack of cellular adhesion properties, it has poor integration with bone tissue. Methods: A fractional CO2 laser was used with various parameters for surface texturing of PEEK substrate to enhance its surface properties. An optical microscope and field-emission scanning electron microscope (FESEM) were used to examine the surface morphology of untextured and laser-textured samples. Energy dispersive X-ray spectroscopy (EDX) was performed to determine the effect of the laser on the microstructure of PEEK. Surface microroughness, atomic force microscopy (AFM), and wettability were invest
... Show MoreThe aim: to evaluate combined microscopy techniques for determining the morphological and optical properties of methadone hydrochloride (MDN) crystals. Materials and methods: MDN crystal formation was optimized using a closed container method and crystals were characterized using polarized light microscope (PLM), scanning electron microscopy (SEM) and confocal microscopy (CM). SEM and CM were used to determine MDN crystal thickness and study its relationship with crystal retardation colours using the Michel-Levy Birefringence approach. Results: Dimensions (mean±SD) of diamond shaped MDN crystals were confirmed using SEM and CM. Crystals were 46.4±15.2 Vs 32.0±8.3 µm long, 28.03±8.2 Vs 20.85±5.5 µm wide, and 6.62±
... Show More