Due to the advantages over other metallic materials, such as superior corrosion resistance, excellent biocompatibility, and favorable mechanical properties, titanium, its alloys and related composites, are frequently utilized in biomedical applications, particularly in orthopedics and dentistry. This work focuses on developing novel titanium-titanium diboride (TiB2; ceramic material) composites for dental implants where TiB2 additions were estimated to be 9 wt.%. In a steel mold, Ti-TiB2 composites were fabricated using a powder metallurgy technique and sintered for five hours at 1200 °C. Microstructural and chemical properties were analyzed by energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD) to evaluate the impact of the TiB2 ceramic addition. Compressive strength, Brinell hardness, porosity, and density, among other mechanical and physical properties, were also measured and characterized. It has been found that adding TiB2 to Ti increases its porosity (35.53%), compressive strength (203.04 MPa), and surface hardness (296.3 kg/mm2) but decreases its density (3.79 gm/cm3). The lightweight and strong composite could be suitable for dental implant applications.
Objective This study evaluated the effects of adding titanium oxide (TiO2) nanofillers on the tear strength, tensile strength, elongation percentage, and hardness of room-temperature-vulcanized (RTV) VST50F and high-temperature-vulcanized (HTV) Cosmesil M511 maxillofacial silicone elastomers. Methods Two types of maxillofacial elastomers, VST50F RTV and Cosmesil M511 HTV, were used. Nano-TiO2 powder was applied as a nanofiller. A total of 120 specimens were fabricated, 60 each of VST50F and Cosmesil M511. The specimens of each type of elastomer were divided into three equal groups on which tests were conducted for tear strength, tensile strength, and hardness i.e., 20 specimens were used for each test. Each group of 20 specimens was further
... Show MoreBackground: Implant stability is a mandatory factor for dental implant (DI) osseointegration and long-term success. The aim of this study was to evaluate the effect of implant length, diameter, and recipient jaw on the pre- and post-functional loading stability. Materials and methods: This study included 17 healthy patients with an age range of 24-61 years. Twenty-two DI were inserted into healed extraction sockets to replace missing tooth/ teeth in premolar and molar regions in upper and lower jaws. Implant stability was measured for each implant and was recorded as implant stability quotient (ISQ) immediately (ISQ0), and at 8 (ISQ8) and 12 (ISQ12) weeks postoperatively, as well as post-functional loading (ISQPFL). The pattern of implant
... Show MoreA new benzylidene derivative, namely N-benzylidene-5-phenyl-1,3,4-thiadiazol-2-amine (BPTA), has been synthesized and instrumentally confirmed with Elemental Analysis (CHN), Nuclear Magnetic Resonance (NMR), and Fourier Transform Infrared Spectroscopy (FT-IR). Titanium Dioxide (TiO2) nanoparticles (NPs) were synthesized and characterized by X-ray. The mutualistic complementary dependence of BPTA with TiO2 nanoparticles as anti-corrosive inhibitor on mild steel (MS) in 1.0 M hydrochloric acid has been tested at various concentrations and various temperatures. The methodological work was achieved by gravimetric measurement methods complemented with surface analysis. The synthesized inhibitor concentrations were 0.1 mM to 0.5 mM and the temper
... Show MoreIn this work, polypyrrole (PPy) composites were chemically prepared by a chemical oxidation method. Also, Tungsten Trioxide (WO3) nanoparticles were prepared and added in certain proportions to PPy. The structure properties were studied for the polypyrole and tungesten trioxide separately before mixing them together. The X-ray diffraction (XRD) analysis revealed a hexagonal WO3 and a triclinic PPy. It was observed that the nano-composite prepared by the addition of WO3 with 10 and 20% volume ratios to PPy shows a triclinic phase with the presence of hexagons. The molecular structures of PPy, WO3, and PPy–WO3 nano composites were depicted by Fourier-transform infrare
... Show MoreThis research study the effect of Titanium dioxide on the tensile properties of
Polystyrene (PS) and Polycarbonate (PC) polymers. The stress – strain curve for pure PS
and pure PC, shows that Young modulus for PS is higher than Young modulus for PC,
because PS have higher ultimate strength than PC.
The addition of TiO2 to PS and PC will reduce the Young modulus and ultimate stress,
because the TiO2 particles will reduces or freeze the orientation of these molecular chain
and reduced the toughness of PC, while when the TiO2 were added to PS, the value of
toughness will be stabilized because TiO2 particles make these chains interlocked and the
mobility of the chains will be restrict.
In this work, ZnO nanostructures for powder ZnO were synthesized by Hydrothermal Method. Size and shape of ZnO nanostructureas can be controlled by change ammonia concentration. In the preparation of ZnO nanostructure, zinc nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor. The structure and morphology of ZnO nanostructure have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The synthesized ZnO nanostructures have a hexagonal wurtzite structure. Also using Zeta potential and Particle Size Analyzers and size distribution of the ZnO powder
Nano TiO2 thin films on glass substrates were prepared at a constant temperature of (373 K) and base vacuum (10-3 mbar), by pulsed laser deposition (PLD) using Nd:YAG laser at 1064 nm wavelength. The effects of different laser energies between (700-1000)mJ on the properties of TiO2 films was investigated. TiO2 thin films were characterized by X-ray diffraction (XRD) measurements have shown that the polycrystalline TiO2 prepared at laser energy 1000 mJ. Preparation also includes optical transmittance and absorption measurements as well as measuring the uniformity of the surface of these films. Optimum parameters have been identified for the growth of high-quality TiO2 films
... Show MoreIn the present study, male albino mice were used to estimate the effects of titanium dioxide nanoparticles (TiO2) suspension used in two doses (150, 600 mg/kg) through intraperitoneal route. The results revealed a significant difference (p≤0.05) among the control and experimental groups in all haematological parameters, including a significant increase in White Blood Cell (W.B.C) count, Mean Cell Volume (MCV), Mean Cell Haemoglobin Concentration (MCHC), and Mean Cell Haemoglobin (MCH). Also, the results showed a significant decrease in Red Blood Cell (R.B.C.) count and Haemoglobin (Hb). Biochemical tests included AST and ALT and showed a significant elevation in all exposed groups, while ALP was
... Show More