Churning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM scheme for categorizing employees. In 1st stage, analytic hierarchy process (AHP) has been utilized for assigning relative weights for employee accomplishment factors. In second stage, TOPSIS has been used for expressing significance of employees for performing employee categorization. A simple 20-30-50 rule in DE PARETO principle has been applied to categorize employees into three major groups namely enthusiastic, behavioral and distressed employees. Random forest algorithm is then applied as baseline algorithm to the proposed employee churn framework to predict class-wise employee churn which is tested on standard dataset of the (HRIS), the obtained results are evaluated with other ML methods. The Random Forest ML algorithm in SNEC scheme has similar or slightly better overall accuracy and MCC with significant less time complexity compared with that of ECPR scheme using CATBOOST algorithm.
Background: Corticotomy-assisted orthodontic treatment is done to induce a state of increased tissue turnover and transient osteopenia, which is followed by a faster rate of orthodontic tooth movement. It considered as an adjunct treatment option for orthodontic treatment of adults. The aim of this Study was to elucidate the effectiveness of a new surgical approach for acceleration of maxillary canine retraction in human with laser assisted flapless corticotomy and evaluate its effect on vitality of pulp and gingival sulcus depth. Materials and methods: the sample comprised of 15 Iraqi patients (9 females and 6 males; mean age 21.7), who were required extraction for their maxillary first premolars followed by retraction of the canines as pa
... Show MoreThis article investigates the decline of language loyalty in the age of audiovisual nearness. It is a socio-linguistic review of previous literature related to language disloyalty. It reviews the current theoretical efforts on the impact of audiovisual nearness created by social media and language loyalty. The descriptive design is used. The argument behind this review is that the audiovisual nearness provided by social media negatively affects language loyalty. This article concludes that the current theoretical efforts have paid much attention to the relationship between the audiovisual nearness and language loyalty. Such efforts have highlighted the fact that the social media platforms have provided unprecedented nearness that provoke in
... Show MoreThis paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the appl
... Show MoreThe use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show MoreSorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.
This study aimed at some of the criteria used to determine the form of the river basins, and exposed the need to modify some of its limitations. In which, the generalization of the elongation and roundness ratio coefficient criterion was modified, which was set in a range between (0-1). This range goes beyond determining the form of the basin, which gives it an elongated or rounded feature, and the ratio has been modified by making it more detailed and accurate in giving the basin a specific form, not only a general characteristic. So, we reached a standard for each of the basins' forms regarding the results of the elongation and circularity ratios. Thus, circular is (1-0.8), and square is (between 0.8-0.6), the blade or oval form is (0.6-0
... Show MoreAbstract
This research aims to know the effect of job burnout in the worker’s performance. The researcher presented a theoretical basis for job burnout and the worker's performance. In order to achieve the objectives of the research, a hypothesis was drawn up that determines the nature of the relationship between the independent variable of job burnout and its dimensions (reduced personal accomplishment, depersonalization, Emotional Exhaustion) and variable dependent performance of workers dimensions (productivity, job satisfaction, organizational commitment, creativity), And to represent the volume of this community according to (de Morgan, D. Morgan) glo
... Show More