Churning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM scheme for categorizing employees. In 1st stage, analytic hierarchy process (AHP) has been utilized for assigning relative weights for employee accomplishment factors. In second stage, TOPSIS has been used for expressing significance of employees for performing employee categorization. A simple 20-30-50 rule in DE PARETO principle has been applied to categorize employees into three major groups namely enthusiastic, behavioral and distressed employees. Random forest algorithm is then applied as baseline algorithm to the proposed employee churn framework to predict class-wise employee churn which is tested on standard dataset of the (HRIS), the obtained results are evaluated with other ML methods. The Random Forest ML algorithm in SNEC scheme has similar or slightly better overall accuracy and MCC with significant less time complexity compared with that of ECPR scheme using CATBOOST algorithm.
Some maps of the chaotic firefly algorithm were selected to select variables for data on blood diseases and blood vessels obtained from Nasiriyah General Hospital where the data were tested and tracking the distribution of Gamma and it was concluded that a Chebyshevmap method is more efficient than a Sinusoidal map method through mean square error criterion.
In this paper, the generalized inverted exponential distribution is considered as one of the most important distributions in studying failure times. A shape and scale parameters of the distribution have been estimated after removing the fuzziness that characterizes its data because they are triangular fuzzy numbers. To convert the fuzzy data to crisp data the researcher has used the centroid method. Hence the studied distribution has two parameters which show a difficulty in separating and estimating them directly of the MLE method. The Newton-Raphson method has been used.
... Show MoreMulti-document summarization is an optimization problem demanding optimization of more than one objective function simultaneously. The proposed work regards balancing of the two significant objectives: content coverage and diversity when generating summaries from a collection of text documents.
Any automatic text summarization system has the challenge of producing high quality summary. Despite the existing efforts on designing and evaluating the performance of many text summarization techniques, their formulations lack the introduction of any model that can give an explicit representation of – coverage and diversity – the two contradictory semantics of any summary. In this work, the design of
... Show MoreHepatitis is one of the diseases that has become more developed in recent years in terms of the high number of infections. Hepatitis causes inflammation that destroys liver cells, and it occurs as a result of viruses, bacteria, blood transfusions, and others. There are five types of hepatitis viruses, which are (A, B, C, D, E) according to their severity. The disease varies by type. Accurate and early diagnosis is the best way to prevent disease, as it allows infected people to take preventive steps so that they do not transmit the difference to other people, and diagnosis using artificial intelligence gives an accurate and rapid diagnostic result. Where the analytical method of the data relied on the radial basis network to diagnose the
... Show MoreThese search summaries in building a mathematical model to the issue of Integer linear Fractional programming and finding the best solution of Integer linear Fractional programming (I.L.F.P) that maximize the productivity of the company,s revenue by using the largest possible number of production units and maximizing denominator objective which represents,s proportion of profits to the costs, thus maximizing total profit of the company at the lowest cost through using Dinkelbach algorithm and the complementary method on the Light industries company data for 2013 and comparing results with Goal programming methods results.
It is clear that the final results of resolution and Dinkelbac
... Show More