Churning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM scheme for categorizing employees. In 1st stage, analytic hierarchy process (AHP) has been utilized for assigning relative weights for employee accomplishment factors. In second stage, TOPSIS has been used for expressing significance of employees for performing employee categorization. A simple 20-30-50 rule in DE PARETO principle has been applied to categorize employees into three major groups namely enthusiastic, behavioral and distressed employees. Random forest algorithm is then applied as baseline algorithm to the proposed employee churn framework to predict class-wise employee churn which is tested on standard dataset of the (HRIS), the obtained results are evaluated with other ML methods. The Random Forest ML algorithm in SNEC scheme has similar or slightly better overall accuracy and MCC with significant less time complexity compared with that of ECPR scheme using CATBOOST algorithm.
The problem of the paper focused on the role of the learning organization in the crisis management strategy, and the extent of the actual interest in both the learning organization and the crisis management and aimed at diagnosing and analyzing that and surrounding questions. The Statistical Package for the Social Sciences (SPSS) program was used to calculate the results and the correlation coefficient between the two main variables. The methodology was descriptive and analytical. The case study was followed by a questionnaire that was distributed to a sample of 31 teachers. The paper adopted a seven-dimensional model of systemic thinking that encourages questioning, empowerment, provision of advanced technologies, and strategic lea
... Show MoreProfessional learning societies (PLS) are a systematic method for improving teaching and learning performance through designing and building professional learning societies. This leads to overcoming a culture of isolation and fragmenting the work of educational supervisors. Many studies show that constructing and developing strong professional learning societies - focused on improving education, curriculum and evaluation will lead to increased cooperation and participation of educational supervisors and teachers, as well as increases the application of effective educational practices in the classroom.
The roles of the educational supervisor to ensure the best and optimal implementation and activation of professional learning soci
... Show MoreThe purpose of the study is to identify the teaching techniques that mathematics' teachers use due to the Brain-based learning theory. The sample is composed of (90) teacher: (50) male, (40) female. The results have shown no significant differences between male and female responses' mean. Additionally, through the observation of author, he found a lack of using Brain-based learning techniques. Thus, the researcher recommend that it is necessary to involve teachers in remedial courses to enhance their ability to create a classroom that raise up brain-based learning skills.
The convergence speed is the most important feature of Back-Propagation (BP) algorithm. A lot of improvements were proposed to this algorithm since its presentation, in order to speed up the convergence phase. In this paper, a new modified BP algorithm called Speeding up Back-Propagation Learning (SUBPL) algorithm is proposed and compared to the standard BP. Different data sets were implemented and experimented to verify the improvement in SUBPL.
The study aimed to determine the effect of the flipped learning model in improving the acquisition of the overhand serve skill in volleyball among second-year students at the College of Physical Education and Sport Sciences, University of Baghdad, for the academic year 2024/2025. The study used an experimental design with a control group and pre-post testing, on a purposive sample consisting of 12 students. The model relied on watching short videos before class via the SGS application, and practical application in class at a rate of three sessions per week. The results showed a significant improvement in performance, as the calculated value (t = 5.356) exceeded the tabulated value (2.042) at a significance level of 0.05. The percentage of s
... Show MoreIn this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show MoreDetection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreThis work aims at finding out the impact of teaching types blended learning strategies on academic students` achievement. A review of related literature indicates that almost no study has ever attempted to focus specifically on the effect of the different kinds of blended learning strategies on EFL students` achievement in the educational research writing, and the present study attempts to fill this gap. The study focused on the students at the Master's degree in Educational Research Writing in the first semester of the academic year 2020/2021. The sample has selected from the college of Education Ibn-Rushd (18) students. Material has been designed for the Master candidates’ participants of the study was divided into two groups: one an e
... Show Moreبعد الاحتجاجات التي اندلعت في ليبيا في فبراير 3122 ،استند مجلس الأمن وهيئات الأمم المتحدة الأخرى على مفهوم المسئولية عن الحماية (R2P )(لمعالجة الأوضاع الإنسانية الناجمة عن تلك الاحتجاجات. وأصدر المجلس القرار 1970والذي فرض بموجبه حزمة من العقوبات على ليبيا، ثم أصدر القرار 1973 الذي سمح بالتدخل العسكري هناك. وبعد البدء بتنفيذ الحملة العسكرية تبين أن الناتو استغل هذه القرارات لتنفيذ أجندته الخاصة وعمل على الإطاحة بالن
... Show More