Human posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can precisely recognize the human central issues, really work on the exactness of human posture assessment, and can adjust to the intricate scenes with thick individuals and impediment. Finally, the difficulties and possible future trends are described, and the development of the field is presented.
Recently Tobit Quantile Regression(TQR) has emerged as an important tool in statistical analysis . in order to improve the parameter estimation in (TQR) we proposed Bayesian hierarchical model with double adaptive elastic net technique and Bayesian hierarchical model with adaptive ridge regression technique .
in double adaptive elastic net technique we assume different penalization parameters for penalization different regression coefficients in both parameters λ1and λ2 , also in adaptive ridge regression technique we assume different penalization parameters for penalization different regression coefficients i
... Show MoreThe δ-mixing ratios have been calculated for several γ-transitions in 90Mo using the 𝛔 𝐉 method. The results are compared with other references the agreement is found to be very good .this confirms the validity of the 𝛔 𝐉 method as a tool for analyzing the angular distribution of γ-ray. Key word: population parameter, γ-ray transition, 𝛔 𝐉 method, multiple mixing ratios.
The goal of our study is to perform detailed multiband surface photometry of the spiral galaxy NGC 4448 and its brightest star-forming regions. The structure and composition of the stellar population in the surface brightness galaxy NGC 4448 was studied using BVR CCD photometry. The observations were obtained on the 1.88 m optical telescope of Kottamia Astronomical Observatory (KAO), Egypt. A two-dimensional decomposition of the galaxy bulge and disk components is carried out. A powerful star forming region is observed near the galactic center. Based on the positions of the various components of the galaxy in two color diagrams. From the observations, the surface brightness profiles, Ellipticity profiles, position angle profiles and colo
... Show MoreNano gamma alumina was prepared by double hydrolysis process using aluminum nitrate nano hydrate and sodium aluminate as an aluminum source, hydroxyle poly acid and CTAB (cetyltrimethylammonium bromide) as templates. Different crystallization temperatures (120, 140, 160, and 180) 0C and calcinations temperatures (500, 550, 600, and 650) 0C were applied. All the batches were prepared at PH equals to 9. XRD diffraction technique and infrared Fourier transform spectroscopy were used to investigate the phase formation and the optical properties of the nano gamma alumina. N2 adsorption-desorption (BET) was used to measure the surface area and pore volume of the prepared nano alumina, the particle size and the
... Show MoreIn the present work, a closed loop circulation system consist of three testing sections was designed and constructed. The testing sections made from (3m) of commercial carbon steel pipe of diameters(5.08, 2.54 and 1.91 cm) . Anionic surfactant (SDBS )with concentrations of (50, 100, 150, 200 and 250 ppm) was tested as a drag reducing agent. The additive(SDBS)studied using crude oil from south of Iraq. The flow rates of crude oil were used in 5.08 and 2.54 cm I.D. pipes are (1 - 12) m3/hr while (1-6) m3/hr were used in 1.91 cm J .D. pipe . Percentage drag reduction (%Dr) was found to increase by increasing solution velocity, pipe diameter and additives concentration (i.e. increasi
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show More