The dependable and efficient identification of Qin seal script characters is pivotal in the discovery, preservation, and inheritance of the distinctive cultural values embodied by these artifacts. This paper uses image histograms of oriented gradients (HOG) features and an SVM model to discuss a character recognition model for identifying partial and blurred Qin seal script characters. The model achieves accurate recognition on a small, imbalanced dataset. Firstly, a dataset of Qin seal script image samples is established, and Gaussian filtering is employed to remove image noise. Subsequently, the gamma transformation algorithm adjusts the image brightness and enhances the contrast between font structures and image backgrounds. After a series of preprocessing operations, the oriented gradient histograms (HOG) features are extracted from the images. During model training, different weights are assigned to classes with varying sample quantities to address the issue of class imbalance and improve the model's classification accuracy. Results show that the model achieves an accuracy of 95.30%. This research can help historians quickly identify and extract the text content on newly discovered Qin slip cultural relics, shortening the cycle of building a historical database.
Subcutaneous vascularization has become a new solution for identification management over the past few years. Systems based on dorsal hand veins are particularly promising for high-security settings. The dorsal hand vein recognition system comprises the following steps: acquiring images from the database and preprocessing them, locating the region of interest, and extracting and recognizing information from the dorsal hand vein pattern. This paper reviewed several techniques for obtaining the dorsal hand vein area and identifying a person. Therefore, this study just provides a comprehensive review of existing previous theories. This model aims to offer the improvement in the accuracy rate of the system that was shown in previous studies and
... Show MoreOver the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time. In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as D
... Show MoreMethods of speech recognition have been the subject of several studies over the past decade. Speech recognition has been one of the most exciting areas of the signal processing. Mixed transform is a useful tool for speech signal processing; it is developed for its abilities of improvement in feature extraction. Speech recognition includes three important stages, preprocessing, feature extraction, and classification. Recognition accuracy is so affected by the features extraction stage; therefore different models of mixed transform for feature extraction were proposed. The properties of the recorded isolated word will be 1-D, which achieve the conversion of each 1-D word into a 2-D form. The second step of the word recognizer requires, the
... Show MoreThis study proposed a biometric-based digital signature scheme proposed for facial recognition. The scheme is designed and built to verify the person’s identity during a registration process and retrieve their public and private keys stored in the database. The RSA algorithm has been used as asymmetric encryption method to encrypt hashes generated for digital documents. It uses the hash function (SHA-256) to generate digital signatures. In this study, local binary patterns histograms (LBPH) were used for facial recognition. The facial recognition method was evaluated on ORL faces retrieved from the database of Cambridge University. From the analysis, the LBPH algorithm achieved 97.5% accuracy; the real-time testing was done on thirty subj
... Show MoreCriticism is inherently impolite and a face-threatening act generally leading to conflicts among interlocutors. It is equally challenging for both native and non-native speakers, and needs pre-planning before performing it. The current research examines the production of non-institutional criticism by Iraqi EFL university learners and American native speakers. More specifically, it explores to what extent Iraqi EFL learners and American native speakers vary in (i) performing criticism, (ii) mitigating criticism, and (iii) their pragmatic choices according to the contextual variables of power and distance. To collect data, a discourse-completion task was used to elicit written data from 20 Iraqi EFL learners and 20 American native speaker
... Show MoreRecognizing facial expressions and emotions is a basic skill that is learned at an early age and it is important for human social interaction. Facial expressions are one of the most powerful natural and immediate means that humans use to express their feelings and intentions. Therefore, automatic emotion recognition based on facial expressions become an interesting area in research, which had been introduced and applied in many areas such as security, safety health, and human machine interface (HMI). Facial expression recognition transition from controlled environmental conditions and their improvement and succession of recent deep learning approaches from different areas made facial expression representation mostly based on u
... Show MoreWorld War II has brought suffering for all people; it has led people to have a nostalgic feeling. The war has many faces all of them are ugly, like death, separation, loneliness, violence, crime, betrayal, and disconnection and many other meanings. Michael Ondaatje in his novel The English Patient (1992) portrays a picture of the effect of World War II on four different characters; Hana a Canadian nurse, The English patient who is Hungarian, Caravaggio a Canadian-Italitan thief, and Kip an Indian sapper. They live together in one house, share their secrets and memories about World War II. Ondaatje brings them together to reveal their secrets and to heal their wounds of the war experience.
World War II has brought suffering for all people; it has led people to have a nostalgic feeling. The war has many faces all of them are ugly, like death, separation, loneliness, violence, crime, betrayal, and disconnection and many other meanings. Michael Ondaatje in his novel The English Patient (1992) portrays a picture of the effect of World War II on four different characters; Hana a Canadian nurse, The English patient who is Hungarian, Caravaggio a Canadian-Italitan thief, and Kip an Indian sapper. They live together in one house, share their secrets and memories about World War II. Ondaatje brings them together to reveal their secrets and to heal their wounds of the war experience.
In this research, the problem of multi- objective modal transport was formulated with mixed constraints to find the optimal solution. The foggy approach of the Multi-objective Transfer Model (MOTP) was applied. There are three objectives to reduce costs to the minimum cost of transportation, administrative cost and cost of the goods. The linear membership function, the Exponential membership function, and the Hyperbolic membership function. Where the proposed model was used in the General Company for the manufacture of grain to reduce the cost of transport to the minimum and to find the best plan to transfer the product according to the restrictions imposed on the model.
Cuneiform symbols recognition represents a complicated task in pattern recognition and image analysis as a result of problems that related to cuneiform symbols like distortion and unwanted objects that associated with applying Binrizetion process like spots and writing lines. This paper aims to present new proposed algorithms to solve these problems for reaching uniform results about cuneiform symbols recognition that related to (select appropriate Binerized method, erased writing lines and spots) based on statistical Skewness measure, image morphology and distance transform concepts. The experiment results show that our proposed algorithms have excellent result and can be adopted
... Show More