Preferred Language
Articles
/
bsj-9768
Qin Seal Script Character Recognition with Fuzzy and Incomplete Information
...Show More Authors

The dependable and efficient identification of Qin seal script characters is pivotal in the discovery, preservation, and inheritance of the distinctive cultural values embodied by these artifacts. This paper uses image histograms of oriented gradients (HOG) features and an SVM model to discuss a character recognition model for identifying partial and blurred Qin seal script characters. The model achieves accurate recognition on a small, imbalanced dataset. Firstly, a dataset of Qin seal script image samples is established, and Gaussian filtering is employed to remove image noise. Subsequently, the gamma transformation algorithm adjusts the image brightness and enhances the contrast between font structures and image backgrounds. After a series of preprocessing operations, the oriented gradient histograms (HOG) features are extracted from the images. During model training, different weights are assigned to classes with varying sample quantities to address the issue of class imbalance and improve the model's classification accuracy. Results show that the model achieves an accuracy of 95.30%. This research can help historians quickly identify and extract the text content on newly discovered Qin slip cultural relics, shortening the cycle of building a historical database.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 30 2018
Journal Name
Baghdad Science Journal
Electronic Structure of Copper Antimony Using Compton Scattering Technique
...Show More Authors

In this paper we present the first ever measured experimental electron momentum density of Cu2Sb at an intermediate resolution (0.6 a.u.) using 59.54 keV 241Am Compton spectrometer. The measurements are compared with the theoretical Compton profiles using density function theory (DFT) within a linear combination of an atomic orbitals (LCAO) method. In DFT calculation, Perdew-Burke-Ernzerhof (PBE) scheme is employed to treat correlation whereas exchange is included by following the Becke scheme. It is seen that various approximations within LCAO-DFT show relatively better agreement with the experimental Compton data. Ionic model calculations for a number of configurations (Cu+x/2)2(Sb-x) (0.0≤x≤2.0) are also performed utilizing free a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Engineering
Calculating Production Rate of each Branch of a Multilateral Well Using Multi-Segment Well Model: Field Example
...Show More Authors

Multilateral wells require a sophisticated type of well model to be applied in reservoir simulators to represent them. The model must be able to determine the flow rate of each fluid and the pressure throughout the well. The production rate calculations are very important because they give an indication about some main issues associated with multi-lateral wells such as one branch may produce water or gas before others, no production rate from one branch, and selecting the best location of a new branch for development process easily.                                &nbsp

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 30 2020
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Using TD-ABC technology to determine idle production capacity: An applied research in Al-Wasat Oil Company
...Show More Authors

The aim of the research to apply TD-ABC technology to determine the idle capacity of the central oil companies (oil field east of Baghdad), as a modern cost management technology based on time-oriented activities (TD-ABC) is used by industrial companies in general and oil companies on In particular to build a sustainable Calvinist pillar and make future decisions by identifying idle energy to gain it a competitive advantage, the descriptive analytical approach has been adopted in calculating and analyzing the company’s data for 2018, and the most prominent conclusions of this research are managing idle energy and the task of applying cost technology on the basis of time-oriented activities and providing Convenient spatial infor

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Emergency Messages Dissemination Challenges Through Connected Vehicles for Efficient Intelligent Transportation Systems: A Review
...Show More Authors

Recent growth in transport and wireless communication technologies has aided the evolution of Intelligent Transportation Systems (ITS). The ITS is based on different types of transportation modes like road, rail, ocean and aviation. Vehicular ad hoc network (VANET) is a technology that considers moving vehicles as nodes in a network to create a wireless communication network. VANET has emerged as a resourceful approach to enhance the road safety. Road safety has become a critical issue in recent years. Emergency incidents such as accidents, heavy traffic and road damages are the main causes of the inefficiency of the traffic flow. These occurrences do not only create the congestion on the road but also increase the fuel consumption and p

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Science
A Comparison of Different Estimation Methods to Handle Missing Data in Explanatory Variables
...Show More Authors

Missing data is one of the problems that may occur in regression models. This problem is usually handled by deletion mechanism available in statistical software. This method reduces statistical inference values because deletion affects sample size. In this paper, Expectation Maximization algorithm (EM), Multicycle-Expectation-Conditional Maximization algorithm (MC-ECM), Expectation-Conditional Maximization Either (ECME), and Recurrent Neural Networks (RNN) are used to estimate multiple regression models when explanatory variables have some missing values. Experimental dataset were generated using Visual Basic programming language with missing values of explanatory variables according to a missing mechanism at random general pattern and s

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Diagnosis of Malaria Infected Blood Cell Digital Images using Deep Convolutional Neural Networks
...Show More Authors

     Automated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (6)
Scopus Crossref
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Automatic Diagnosis of Coronavirus Using Conditional Generative Adversarial Network (CGAN)
...Show More Authors

     A global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an  incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien

... Show More
Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
The effect of different flooding ratio on Al-Shuwaija marsh
...Show More Authors

In this research, the effect of changing the flood level of Al-Shuwaija marsh was studied using the geographic information systems, specifically the QGIS program, and the STRM digital elevation model with a spatial analysis accuracy of 28 meters, was used to study the marsh. The hydraulic factors that characterize the marsh and affecting on the flooding such as the ranks of the water channels feeding the marsh and the degree of slope and flat areas in it are studied. The area of immersion water, the mean depth, and the accumulated water volume are calculated for each immersion level, thereby, this study finds the safe immersion level for this marsh was determined.

View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
Spatio-Temporal Mixture Model for Identifying Risk Levels of COVID-19 Pandemic in Iraq
...Show More Authors

     This paper focuses on choosing a spatial mixture model with implicitly includes the time to represent the relative risks of COVID-19 pandemic using an appropriate model selection criterion. For this purpose, a more recent criterion so-called the widely Akaike information criterion (WAIC) is used which we believe that its use so limitedly in the context of relative risk modelling. In addition, a graphical method is adopted that is based on a spatial-temporal predictive posterior distribution to select the best model yielding the best predictive accuracy. By applying this model selection criterion, we seek to identify the levels of relative risk, which implicitly represents the determination of the number of the model components o

... Show More
View Publication
Scopus Crossref